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Abstract

Detailed ionic models of cardiac cells are difficult for numerical simulations because they
consist of a large number of equations and contain small parameters. The presence of small
parameters, however, may be used for asymptotic reduction of the models. Earlier results
have shown that the asymptotics of cardiac equations are non-standard. Here we apply such
a novel asymptotic method to an ionic model of human atrial tissue in order to obtain a
reduced but accurate model for the description of excitation fronts. Numerical simulations
of spiral waves in atrial tissue show that wave fronts of propagating action potentials break-
up and self-terminate. Our model, in particular, yields a simple analytical criterion of
propagation block, which is similar in purpose but completely different in nature to the
‘Maxwell rule’ in the FitzHugh-Nagumo type models. Our new criterion agrees with direct
numerical simulations of break-up of re-entrant waves. Key words: excitation; conduction;
refractoriness; mathematical model

1 Introduction

Refractoriness is a fundamental characteristic of biological excitable media, including cardiac
tissues. The boundary between absolute and relative refractoriness can be defined as the
boundary between the ability and the inability of the medium to conduct excitation waves
[1]. Transient conduction block is thought to be a key event in the initiation of re-entrant
arrhythmias and in the development and the self-perpetuation of atrial and ventricular
fibrillation [2–5]. So it is important to understand well the immediate causes and conditions
of propagation blocks and sudden break-ups in such nonstationary regimes. The aim of
the present work is to improve this understanding via analysis of a mathematical model of
human atrial tissue [6].

Kohl et al. [7] distinguish two types of single-cell cardiac models: ‘membrane potential
models’ and ‘ionic current models’. The membrane potential models attempt to represent
cellular electrical activity by describing, with a minimal number of equations, the spatio-
temporal course of changes in membrane potential. Their equations are constructed using
a dynamical-systems arguments to caricature various properties and processes of cardiac
function. Examples of this type of models start with the mathematical description of heart-
beat as a relaxation oscillator by van der Pol and van der Mark [8] and continue to play
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an important role in describing biophysical behaviour [9] with the the most successful one
arguably being the FitzHugh-Nagumo equations [10, 11],

∂T V = D ∂2
XV + εV (V − V 3/3− g),

∂T g = εg (V + β − γg), (1)

where V and g are dynamical variables corresponding to the action potential and the car-
diac current gating variables, εV , εg, γ, and β are parameters and D is a diffusion constant.
Further examples of such models can be found in [12–15], among others. An attractive
feature of this approach is that, along with a reasonable description of excitability, thresh-
old, plateau and refractoriness, it focusses on generic equations which can often be treated
analytically and their dynamical properties can be extended and applied to very different
physical, chemical or biological problems of similar mathematical structure. The main draw-
back of these models, however, is their lack of an explicit correspondence between model
components and constituent parts of the biological system, e.g. ion channels and transporter
proteins. The second type of models, the ionic current models, attempt to model action po-
tential (AP) behaviour on the basis of ion fluxes in as much detail as possible in order to
fit experimental data and predict behaviour under previously untested conditions. A major
breakthrough in this direction of cell modelling was the work of Hodgkin and Huxley [16]
representing the first complete quantitative description of the giant squid axon. The ionic
concept was applied to cardiac cells by Noble [17, 18] and there are now ionic models of
sinoatrial node pacemaker cells e.g. [19], atrial myocytes e.g. [20], Purkinje fibres e.g. [21],
ventricular myocytes e.g. [22, 23] and cardiac connective tissue cells e.g. [24]. This is only
an incomplete list and the collection of available models continues to expand. The ionic
models have been successfully applied to study various conditions of metabolic activity and
excitation-contraction coupling, feedback mechanisms, response to drugs, etc. For recent
reviews of detailed ionic models, their computational aspects and applications we refer to
the reviews of Kohl et al. [7] and Clayton [25]. However, these models are very complicated
and have to be studied mostly numerically. Their numerical study is aggravated by stiffness
of the equations, i.e. broad range of characteristic time scales of dynamic variables caused
by numerous small parameters of the models.

An attractive compromise is exemplified by the model of Fenton and Karma [26], which
combines the simplicity of only three differential equations with realistic description of
(crudely) the AP shape and (rather nicely) the dependence of the AP duration and front
propagation speed on the diastolic interval, i.e. ‘restitution curves’. Unlike the earlier two-
component model by Aliev and Panfilov [15] it has a structure similar to that of true ionic
models, and its parameters have been fitted to mimick properties of selected four detailed
ventricular myocyte models. It is simpler than later proposed models of the same ”interme-
diate” kind such as [27]. However, this deservedly popular model has not been in any way
”derived” from any detailed model, so it is only reliable within the phenomenology on which
it has been validated, i.e. normal or premature APs, but not propagation blocks.

The problem of conditions for propagation has an elegant solution for the FitzHugh-
Nagumo system Eqs. 1 and its generalizations, within an asymptotic theory exploiting the
difference of time scales of different variables, such as εg � εV in case of Eqs. 1 [28]. The
answer is formulated in terms of the instantaneous values of the slow variables (g in Eqs. 1),
and claims that excitation will propagate if the definite integral of the kinetic term in the
right hand side of the equation for the fast variable (V in Eqs. 1 ), between the lower and
the upper quasi-stationary states, is positive [29, see eq. 4.5]. This is similar to Maxwell’s
‘equal areas’ rule in the theory of phase transitions [30, see section 9.3]. In case of Eqs. 1 ,
this rule boils down to an inequality for the slow variable g: excitation front will propagate
if the value of g at it is less than a certain g∗. However, FitzHugh-Nagumo type models
completely misrepresent the idiosyncratic ‘front dissipation’ scenario by which propagation
block happens in the ionic current models [31]. The reason is that small parameters in
such models appear in essentially different ways from the one assumed by the standard
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asymptotic theory [32, 33]. So, this elegant ‘Maxwell rule’ solution is not applicable to any
realistic models.

We have developed an alternative asymptotic approach based on special mathematical
properties of the detailed ionic models, not captured by the standard theory [34]. This
approach demonstrated excellent quantitative accuracy for APs in isolated Noble-1962 model
cells [33], and correctly, on a qualitative level, described the front dissipation mechanism
of break-up of re-entrant waves in Courtemanche et al. [6] model of human atrial tissue,
although quantitative correspondence with the full model was poor [35]. In this paper we
suggest, for the first time, a refined simplified asymptotic model of a cardiac excitation front,
which provides numerically accurate prediction of the front propagation velocity (within
16 %) and its profile (within 0.7 mV). It also gives an analytical condition for propagation
block in a re-entrant wave, expressed as a simple inequality involving the slow inactivation
gate j of the fast sodium current. The condition is in excellent agreement with results of
direct numerical simulations of the Courtemanche et al. [6] full ionic model of 21 partial
differential equations.

The paper is organised as follows. In §2 we introduce the simplified model equations and
discuss their properties. Analytical solutions are presented in §3 for a piecewise linear ‘car-
icature’ version of our simplified model. Accurate numerical results and a two-dimensional
test are presented in §4. The paper concludes with a discussion of results and questions
open for future studies in §5.

2 Mathematical formulation of the model equations

2.1 Asymptotic reduction

In this section we briefly summarise the asymptotic arguments of [35] relevant to our present
purposes. We re-write Courtemanche et al. [6] model in the following one-parameter form:

∂T V = D
(
∂2

X +K∂X

)
V −

(
ε−1INa(V,m, h, j) + Σ′I(V, . . . )

)
CM

,

∂T m =

(
m(V ; ε)−m

)
ε τm(V )

, m(V ; 0) = M(V ) θ(V − Vm),

∂T h =

(
h(V ; ε)− h

)
ε τh(V )

, h(V ; 0) = H(V ) θ(Vh − V ),

∂T ua =

(
ua(V )− ua

)
ε τua

(V )
,

∂T w =

(
w(V )− w

)
ε τw(V )

,

∂T oa =

(
oa(V )− oa

)
ε τoa(V )

,

∂T d =

(
d(V )− d

)
ε τd(V )

,

∂T U = F(V, . . . ) (2)

where D is the voltage diffusion constant, ε is a small parameter used for the asymptotics, K
is the curvature of the propagating front, θ() is the Heaviside function, Σ′I() is the sum of all
currents except the fast sodium current INa, the dynamic variables V , m, h, ua, oa and d are
defined in [6], U = (j, oi, . . . ,Nai,Ki, . . . )T is the vector of all other, slower variables, and F
is the vector of the corresponding right-hand sides. The rationale for this parameterisation
is:

1. The dynamic variables V , m, h, ua, w, oa, d are ‘fast variables’, i.e. they change



Conditions for propagation in atrial tissue 4

.

τ
[m

s]
m

3
, h

I i
n

,o
u
t

20

20

15

10

5

-5

τE

fast

slow

10−3

10−3

10−2

10−2

100

100

101

101

102

102

(a)

(b)

(c)

(d)

INa

I N
a

Iout

Iin

m3

h

V

V
[m

V
]

V [mV]

t [ms]

t [ms]

-2000

-1500

-1000

-500

500

1000

-20000

-15000

-10000

-5000

5000

10000

-100

-50

0
0

0

0

0

0

50

1

0.5

-80 -60 -40 -20

Figure 1: Asymptotic properties of the atrial model of Courtemanche et al. [6]. (a) Time scale
functions of dynamical variables vs. time. (b) Quasistationary values of the gating variables m
and h. (c) Transmembrane voltage V as a function of time. (d) Main ionic currents vs. time.
Iin = Ib,Na + INaK + ICa,L + Ib,Ca + INaCa and Iout = Ip,Ca + IK1 + Ito + IKur + IKr + IKs + Ib,K

are the sums of all inward and outward currents, respectively and the individual currents are
described in [6]. The results are obtained for a space-clamped version of the model at values
of the parameters as given in [6]. In (c) and (d) a typical AP is triggered by initialising the
transmembrane voltage to a non-equilibrium value of V = −20 mV.

significantly during the upstroke of a typical AP potential, unlike all other variables
which change only slightly during that period. The relative speed of the dynamical
variables is estimated by comparing the magnitude of their corresponding ’time scale
functions’ as shown in Fig. 1(a). For a system of differential equations dy/ dt = F (y)
the time scale functions are defined as τi(y) ≡

∣∣( dFi/ dyi)−1
∣∣, i = 1 . . . N and coincide

with the functions τ already present in Eqs. 2.

2. A specific feature of V is that it is fast only because of one of the terms in the right-
hand side, the large current INa, whereas other currents are not that large and so do
not have the large coefficient ε−1 in front of them.

3. The fast sodium current INa is only large during the upstroke of the AP, and not that
large otherwise as illustrated in Fig. 1(d). This is due to the fact that either gate m
or gate h or both are almost closed outside the upstroke since their quasistationary
values m(V ) and h(V ) are small there as seen in Fig. 1(b). Thus in the limit ε → 0,
functions m(V ) and h(V ) have to be considered zero in certain overlapping intervals
V ∈ (−∞, Vm] and V ∈ [Vh,+∞), and Vh ≤ Vm, hence the representations m(V ; 0) =
M(V ) θ(V − Vm) and h(V ; 0) = H(V ) θ(Vh − V ).

4. The term K∂XV in the first equation represents the effect of the front curvature for
waves propagating in two or three spatial dimensions. Derivation of this term using
asymptotic arguments can be found e.g. in [28]. A simple rule-of-thumb way to
understand it is this. Imagine a circular wave in two spatial dimensions. The diffusion
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term in the equation for V then has the form D
(
∂2

X + ∂2
Y

)
V = D

(
∂2

R + 1
R∂R

)
V

where R is the polar radius. If R at the front is large, its instant curvature K = 1/R
changes slowly as the front propagates, and can be replaced with a constant for long
time intervals. Considering R as a new X coordinate, we then get Eqs. 2.

These aspects, as applied to the fast sodium current, have been shown to be crucial for the
correct description of the propagation block [31]. In particular, it is important that the
h-gate is included among the fast variables. The particular importance of h dynamics at the
fringe of excitability has been noted before, e.g. for the modified Beeler-Reuter model [36].
A more detailed discussion of the parameterisation given by Eqs. 2 can be found in [35].

A change of variables1 t = ε−1T , x = (εD)−1/2X, κ = (εD)1/2K and subsequently the
limit ε → 0 transforms Eqs. 2 into

∂tV =
(
∂2

x + κ∂x

)
V − C−1

M INa(V,m, h, j),

∂tm =
(
M(V ) θ(V − Vm)−m

)
/τm(V ),

∂th =
(
H(V ) θ(Vh − V )− h

)
/τh(V ),

∂tua =
(
ua(V )− ua

)
/τua(V ),

∂tw =
(
w(V )− w

)
/τw(V ),

∂toa =
(
oa(V )− oa

)
/τoa

(V ),

∂td =
(
d(V )− d

)
/τd(V ),

∂tU = 0. (3)

In other words, we consider the fast time scale on which the upstroke of the AP happens,
neglect the variations of slow variables during this period as well as all transmembrane
currents except INa, as they do not make significant contribution during this period and
replace m and h with zero when they are small.

In the resulting Eqs. 3 the first three equations for V , m and h form a closed subsystem,
the following four equations for ua, w, oa and d, can be solved if V (x, t) is known but do
not affect its dynamics, and the rest of the equations state that all other variables remain
unchanged. Hence we concentrate on the first three equations as the system describing
propagation of an AP front or its failure. The above derivation procedure does not give a
precise definition of the functions H(V ) and M(V ), it only requires that these are reasonably
close to h(V ) and m(V ) for those values of V where these functions are not small. Here
‘reasonably close’ means that replacement of h(V ) with H(V ) θ(Vh − V ) and m(V ) with
M(V ) θ(V − Vm) does not change significantly the solutions of interest, i.e. the propagating
fronts. We have found that the simplest approximation in the form M(V ) = 1, H(V ) = 1
works well enough. This is demonstrated in table 1 where various choices of M(V ) and
H(V ) are tested. So, ultimately, we consider the following system

∂tV =
(
∂2

x + κ∂x

)
V + INa(V ) j h m3, (4a)

∂th =
(
θ(Vh − V )− h

)
/τh(V ), (4b)

∂tm =
(
θ(V − Vm)−m

)
/τm(V ), (4c)

where

INa(V ) = gNa(VNa − V ), (5a)

τk(V ) =
(
αk(V ) + βk(V )

)−1
, k = h, m, (5b)

1A change of the value of D is equivalent to rescaling of the spatial coordinate, and is not critical to any of
the questions considered here. In order to operate with dimensional velocity, we assume the value of the diffusion
coefficient D = 0.03125mm2/ms, as in our earlier publications [35, 37]. Increase of the diffusion coefficient to, say,
D = 0.1mm2/ms raises the propagation velocity from 0.28mm/ms in Table 1 to 0.50mm/ms, in full agreement
e.g. with results of Xie et al. [38] for the same model.
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Model Wave speed Rel. error Post-front Maximum rate
voltage of AP rise

C, [mm/ms] in C Vω, [mV] ( dV/ dt)max [V/s]

The full model of
Courtemanche et al. [6] 0.2824 – 3.60 173.83

Model [6] with replacements
h(V ) → h(V ) θ(Vh − V ),
m(V ) → m(V ) θ(V − Vm) 0.2130 24.5 % -0.99 173.83

Equations 3 with

M(V ) = m(V ), H(V ) = h(V ) 0.2095 25.8 % -1.06 183.82

Equations 3 with
M(V ) = 1, H(V ) = 1, i.e. Eqs. 4 0.2372 16.0 % 2.89 193.66

Equations 6 0.4422 57.3 % 18.26 643.97

Table 1: A comparison of the wave speed C and post-front voltage amplitudes Vω and the
maximum rate of AP rise ( dV/ dt)max of various approximations to the Courtemanche et al.
[6] model. Prior to firing, the tissue in the models was set at rest at the standard values of the
parameters, see [6]. In these and other numerical results K = 0 is assumed unless explicitly
stated otherwise. Space-clamped versions of the models are used to compute ( dV/ dt)max.

αh(V ) = 0.135 e−(V +80)/6.8 θ(−V − 40),

βh(V ) =
(
3.56 e0.079V + 3.1× 105 e0.35V

)
θ(−V − 40)

+ θ(V + 40)
(
0.13(1 + e−(V +10.66)/11.1)

)−1
,

αm(V ) =
0.32(V + 47.13)

1− e−0.1(V +47.13)
,

βm(V ) = 0.08e−V/11,

gNa = 7.8, VNa = 67.53, Vh = −66.66, Vm = −32.7.

All parameters and functions here are defined as in [6] except the new ‘gate threshold’
parameters Vh and Vm which are chosen from the conditions h(Vh) = 1/2 and m3(Vm) = 1/2.
As follows from the derivation, variable j, the slow inactivation gate of the fast sodium
current, acts as a parameter of the model. It is the only one of all slow variables included
in the vector U that affects our fast subsystem. We say that it describes the ‘excitability’
of the tissue. Notice that it is a multiplier of gNa, so a reduced availability of the fast
sodium channels, e.g. as under tetrodotoxin [39] or arguably in Brugada syndrome [40] can
be formally described by a reduced value of the parameter j.

Before proceeding to the analysis of the simplified three-variable model defined by Eqs. 4
we wish to demonstrate that it is a good approximation of the full model of [6] both on a
qualitative and a quantitative level. On the qualitative level, we show that a temporary ob-
stacle leads to a dissipation of the front. This is illustrated in Fig. 2 which shows propagation
of the AP into a region in time and space where the excitability of the tissue is artificially
suppressed. The sharp wave fronts of the model of Courtemanche et al. [6] as well as of
Eqs. 4 stop propagating and start to spread diffusively once they reach the blocked zone.
The propagation does not resume after the block is removed. This behaviour is completely
different from that of the FitzHugh-Nagumo system of Eqs. 1 in which even though the
propagation is blocked for nearly the whole duration of the AP, the wave resumes once the
block is removed. Table 1 illustrates, on the quantitative level, the accuracy of Eqs. 4 as an
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Figure 2: Response to a temporary local block of excitability (B) in the models of (A) Courte-
manche et al. [6], (B) FitzHugh-Nagumo Eqs. 1 and (C) in Eqs. 4. The border of the blocked
region is shown by broken lines. Solutions are represented by shades of gray: black is the smallest
and white is the largest value of V within the solution. The parameters of the FitzHugh-Nagumo
model are β = 0.75, γ = 0.5 and εg = 0.03, while for the two other models the same parameter
values as described in [6] are used, the block is described in the plots. The value of j = 0.28 in
the block in (c) is just below the propagation threshold, see Fig. 8. The time and space ranges
(in dimensionless units) are 70× 70 in (B) and 80× 50 in (A) and (C).

approximation of the full model of [6].
It is a popular concept going back to classical works [e.g. 41] that the fast activation

gate m is considered a ‘fast variable’ and is ‘adiabatically eliminated’ since most of the
time, except possibly during a very short transient, it is close to its quasistationary value
m ≈ m(V ). Hence the model can be simplified by replacing m with m(V ) and eliminating
the equation for m,

∂tV = ∂2
xV + INa θ(V − Vm) j h,

∂th =
(
θ(Vh − V )− h

)
/τh. (6)

We have explored this possibility for the model of Courtemanche et al. [6] in [35]. Eqs. 6
are qualitatively correct, i.e. they still show front dissipation on collision with a temporary
obstacle, but make a large error in the front propagation speed, as demonstrated in table 1.

2.2 Travelling waves and reduction to ODE of the three-variable
model

To find out when propagation of excitation is possible in our simplified model and when it
will be blocked, we study solutions in the form of propagating fronts as well as the conditions
of existence of such solutions.

We look for solutions in the form of a front propagating with a constant speed and
shape. So we use the ansatz F (z) = F (x + ct) for F = V, h, m where z = x + ct is a
‘travelling wave coordinate’ and c is the dimensionless wave speed of the front, related to
the dimensional speed C by c = (ε/D)1/2C. Then Eqs. 4 reduce to a system of autonomous
ordinary differential equations,

V ′′ = (c− κ) V ′ − INa(V ) j hm3, (7a)

h′ =
(
c τh(V )

)−1(
θ(Vh − V )− h

)
, (7b)
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m′ =
(
c τm(V )

)−1(
θ(V − Vm)−m

)
, (7c)

where the boundary conditions are given by

V (−∞) = Vα, V (+∞) = Vω, Vα < Vh < Vm < Vω, (8a)
h(−∞) = 1, h(+∞) = 0, (8b)
m(−∞) = 0, m(+∞) = 1. (8c)

Here Vα and Vω are the pre- and post-front voltages.
Eqs. 7 represent a system of fourth order so its general solution depends on four arbitrary

constants. Together with constants Vα, Vω and c this makes seven constants to be determined
from the six boundary conditions in Eqs. 8. Thus, we should have a one-parameter family
of solutions, i.e. one of the parameters (Vα, Vω, c) can be chosen arbitrary from a certain
range. A natural choice is Vα because the pre-front voltage acts as an initial condition for a
propagating front in the tissue, and because in our study of the conditions for propagation
it is most conveniently treated as a parameter rather than as an unknown.

3 Analytical study of the reduced model

3.1 An exactly solvable caricature model

The parameter-counting arguments given in the previous section make it plausible that the
problem defined by Eqs. 7 with boundary conditions of Eqs. 8 has a one-parameter family
of travelling wave-front solutions. However, the problem is posed in a highly unusual way
since the asymptotic pre-front and post-front states are not stable isolated equilibria but
belong to continua of equilibria and thus are only neutrally stable. We are not aware of any
general theorems that would guarantee existence of solutions of a nonlinear boundary value-
eigenvalue problem of this kind. For the two-component model of Eqs. 6 considered in [35]
this worry has been alleviated by the fact that there is a ‘caricature’ model which has the
same structure as Eqs. 6 including the structure and stability of the equilibrium set and which
admits an exact and exhaustive analytical study [31]. Fortunately, a similar ‘caricature’
exists for our present three-variable problem as well. We replace functions INa(V ), τh(V )
and τm(V ) defined in Eqs. 5 with constants. The choice of the constants is somewhat
arbitrary. We assume that the events in the beginning of the interval z ∈ [ξ, +∞), where V
is just above Vm, are most important for the front propagation. So for numerical illustrations
we choose the values of constants INa, τh and τm as the values of the corresponding functions
in Eqs. 5 at some fixed value of the voltage V . We set the z axis so that V (0) = Vh, and
then V (ξ) = Vm for some ξ > 0 still to be determined. We demand that the solutions for
the unknowns V , h and m are continuous and that V is smooth at the internal boundary
points.

In this formulation, Eqs. 7b and 7c decouple from Eq. 7a and from each other and solved
separately. The solutions of these first-order linear ODE with constant coefficients are given
by Eqs. 10b and 10c, respectively. It follows that in the interval V ≤ Vm, Eq. 7a is a linear
homogeneous ODE with constant coefficients and its solution given at the first row of Eq. 10a
satisfies the boundary conditions V (−∞) = Vα, V (0) = Vh and V (ξ) = Vm provided that
the internal boundary point ξ is given by Eq. 12. To solve the linear inhomogeneous Eq. 10
in the interval V ≥ Vm we note that its inhomogeneous term f ≡ INa(V ) j hm3 is a sum of
exponentials

f = INa(V ) j
3∑

n=0

(−1)n

(
3
n

)
enξ/(cτm)e−Bnz/c, (9)

Bn ≡
1
τh

+
n

τm
=

τm + n τh

τh τm
,
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and terms proportional to nτh will appear in the solution due to the expression for Bn.
Imposing the boundary conditions at the internal point V (ξ) = Vm and at infinity V (∞) =
Vω, we obtain the solution in this interval given at the second row of Eq. 10a. Finally, the
wave speed c is fixed by Eq. 11b from the requirement that the solution for V (z) is smooth
at the internal boundary point ξ. To summarise, the solution of Eqs. 7 and 8 is

V (z) =


(Vh − Vα) e(c−κ)z + Vα,

Vω − INa j c2τ2
hτ2

m

3∑
n=0

An(c, z),

z ≤ ξ,

z ≥ ξ,
(10a)

h(z) =

{
1,

e−z/(c τh),

z ≤ 0,

z ≥ 0,
(10b)

m(z) =

{
0,

1− e(ξ−z)/(c τm),

z ≤ ξ,

z ≥ ξ,
(10c)

where the pre-front voltage Vα, the post-front voltage Vω and the wave speed c are related
by

Vω = Vm + INa j (c τh τm)2e−ξ/(c τh)
3∑

n=0

an(c)
τm + n τh

, (11a)

0 = (c− κ)(Vm − Vα)− INa j c τhτm e−ξ/(cτh)
3∑

n=0

an(c), (11b)

the distance between points V = Vh and V = Vm is

ξ =
1

(c− κ)
ln
(

Vm − Vα

Vh − Vα

)
, (12)

and An(c, z) and an(c) are abbreviations for

An(c, z) ≡ an(c)
τm + nτh

exp
(

nξτh − (τm + nτh)z
c τh τm

)
, (13a)

an(c) ≡
(

3
n

)
(−1)n

c(c− κ) τh τm + τm + n τh
. (13b)

In the limit τm → 0 this solution tends to the solution of the two-component model of [42],
as expected.

The accurate expression in Eq. 5a for the sodium current INa(V ) vanishes for V =
VNa which, in particular, means that the transmembrane voltage never exceeds VNa. So,
replacing this function with a constant changes the properties of the system qualitatively.
Even bigger discrepancies are expected to occur from replacing the τh(V ) and τm(V ) by
constants because these functions vary by an order of magnitude in the range between the
pre- and the post-front voltage. It is surprising, however, that even this rough approximation
produces results which, with exception of the post-front voltage, are within several percent
from the solution of the detailed ionic model [6] and certainly capture its qualitative features
as can be seen in Fig. 3 where the constants are chosen at V = Vm, i.e. INa(Vm), τh(Vm)
and τm(Vm). This relatively good agreement is not due to this special choice of parameter
values. Indeed, the caricature model and its solution Eqs. 10 involve the parameters INa,
τh, τm, κ, Vα and j. The dependence on the curvature κ is negligible in comparison to
the deviation of the solution Eqs. 10 of the caricature model from the numerical solution
of the three-variable model Eqs. 7. The dependence on the pre-front voltage Vα and the
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Figure 3: (A) The AP potential and (B) the gating variables h and m as functions of the
travelling wave coordinate Z = z

√
D. The solution of the model of Courtemanche et al. [6] is

given by circles, of the full three-variable model of Eqs. 4 by thin lines, and the analytical solution
given by Eqs. 10 for INa = INa(Vm) = 781.8, τh = τh(Vm) = 1.077, τm = τm(Vm) = 0.131,
Vα = −81.18 mV and j = 0.956 by thick lines. The gates h and m are indicated in the plot.
The position of the internal boundary point Ξ = ξ

√
D is indicated by a dash-dotted line.

0
0.8

0.1

0.2

0.2

0.3

0.4

0.4 0.6 1.0

C
[m

m
/
m

s]

j

Figure 4: The wave speed C as a function of the excitation parameter j. Thick lines: the
numerical solution of Eqs. 7. Thin lines: solution Eq. 14 for values of τh and τm corresponding
to a selected voltage V = V∗ in Eqs. 5. From right to left: V∗ = −28, −30, Vm, −34, −36
−38 (mV). In both cases Vα = −81.18 mV and K = 0 mm−1.

excitability parameter j is discussed in section 3.2 and represented in Figs. 4 and 6. The
parameters INa, τh, τm, on the other hand, are somewhat arbitrary but in order to achieve a
good agreement with the original system given by Eqs. 7 we choose these values as the values
of the corresponding functions in Eqs. 5 at various values of V . In Fig. 4 the relationship
between the wave speed c and the excitation parameter j for several such choices of V is
presented. It can be seen that such a variation of the values of INa, τh, τm does not lead to
significant qualitative changes in the solution Eqs. 10 of the caricature model. Figs. 3 and 4
also show, for comparison, the numerical solutions of the detailed ionic model of [6] and of
the full three-variable model of Eqs. 7, which will be described in detail in the next section.

3.2 The condition for propagation

Equation 11b defines c as a smooth function of the parameters within a certain domain. The
boundary of this domain is associated with the propagation failure. Not all parameters, INa,
τh, τm, κ, Vα and j, entering Eq. 11b are of equal importance. We consider here κ = 0 and
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Figure 5: The wave speed C as a function of the time-scale ratio τh/τm in the caricature
model Eqs. 7,8. The values of τh and INa are fixed to the values of the corresponding functions
in Eqs. 5 at a selected voltage V = V∗, the pre-front voltage is Vα = −81.18 mV and curvature
is K = 0 mm−1. Left plot: left to right, V∗ = −38, −36, −34 and −32.7 = Vm (mV), and
j = 0.9775. Right plot: right to left, j = 0.2 to 1.0 and V∗ = Vm.

postpone the investigation of the effects of curvature to the next section. Parameters INa,
τh and τm represent well-defined properties of the tissue, albeit changeable depending on
physiological conditions. On the other hand, parameters j and Vα are not model constants,
but ‘slowly varying’ dynamic quantities: j remains approximately constant throughout the
front, and Vα represents the transmembrane voltage ahead of the front, but both can vary
widely on large scales between different fronts. Hence we need to determine the singular
points of the dispersion relation in Eq. 11b with respect to j and Vα.

Similarly to the two-component caricature [31], Eq. 11b is a transcendental equation for
c, but it is easily solvable for the excitation parameter j:

j =
(Vm − Vα)
6 INa τ4

h τm

e
ξ

c τh

3∏
n=0

(
c2 τh τm + τm + n τh

)
. (14)

The resulting relationship of j and c for a selected value of Vα is shown in Fig. 4. This figure
reveals a bifurcation. For values of j lower than some jmin no travelling wave solutions exist.
After a bifurcation at j > jmin two solutions with different speeds are possible. Our direct
numerical simulations of Eqs. 4 as well as studies of the two-component caricature model
by Hinch [43] suggest that the solutions of the lower branch are unstable. The bifurcation
point jmin can be determined from the condition that j has a minimum with respect to c at
this point and therefore satisfies (

∂j

∂c

)
Vα=const

= 0. (15)

This produces, with j(c) defined by Eq. 14, a quintic polynomial equation for c2.
Activation of the sodium current is possible because τm � τh, permitting transient

channel opening and current flow through the cell membrane. The ratio τh/τm is a function
of V in the full model, and is a constant in Eqs. 7. The minimal value of this ratio, necessary
for propagation, is shown on Fig. 5 as a function of various choices of INa, τm and j; it is
obtained by numerical solution of the algebraic equation Eq. 11b. The smallness of τm/τh
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Figure 6: The threshold value jmin above which propagation is possible, as a function of the pre-
front voltage Vα for the same values of the parameters as in Fig. 3, i.e. τh = 1.077, τm = 0.131.
Shown are different approximations to the perturbation expansion given by Eq. 16: solid line,
zeroth order, Eq. 17; dashed line, first-order, Eq. 18; dotted line: second-order.

allows approximate solution of the above mentioned quintic equation for c2. We set

c2 =
∞∑

n=0

Snτn
m. (16)

Substituting this expansion in Eq. 15 and discarding the small terms of order O(τm) gives
the zeroth-order approximation to the solution as a function of the pre-front voltage Vα

j
(0)
min =

(Vm − Vα)
2INaτh

e
2Θ

Θ+
√

Θ2+4Θ

(
Θ + 2 +

√
Θ2 + 4Θ

)
, (17)

Θ = ln
(
(Vm − Vα)/(Vh − Vα)

)
.

This limit corresponds to the two-variable caricature [31]. For any given value of the pre-
front voltage the value of j must be larger than jmin in order for wave fronts to propagate.
Although lacking sufficient accuracy, the zeroth-order approximation given by Eq. 17 repro-
duces qualitatively well the conditions for propagation and dissipation of excitation fronts
in the model of Courtemanche et al. [6]. Analogously, discarding the small terms of order
O(τ2

m) gives the first-order approximation,

j
(1)
min =

(Vm − Vα)
6 ∆4 τm

e
− ∆Θ

(Aτh−∆Θ)

3∏
n=0

(A τm − n ∆), (18)

∆ = 12 τ2
h

√
Θ(Θ + 4),

A =
(
Θ2(Θ + 4) + Θ3/2(Θ + 2)

√
Θ + 4

)(
11 τm − 6

τh

Θ

)
.

This approximation is already very good and changes insignificantly as more terms are
considered in Eq. 16, see Fig. 6.

4 Numerical results

4.1 Propagating front solutions

We solved Eqs. 7–8 numerically, using the method described in Appendix A. The results
are shown in figures 3, 4 and 7. Figure 3 offers a comparison of the shapes of the solution
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Figure 7: The wave speed C as a function of j and Vα, for the model of Eqs. 7. Rapid changes
are indicated by a higher density of curves. The thick dotted line on the base represents the
threshold value jmin and may be compared to the results in Fig. 6.

of Eqs. 7 with a snapshot of a travelling wave solution of the full model of Courtemanche
et al. [6]. The values of the wave speed and the post-front voltage are presented in table
1 and also show an excellent agreement. This confirms our assumptions that the fronts of
travelling waves in the full model have constant speed and shape and thus satisfy an ODE
system, and that j remains approximately constant during the front. Figure 7 shows the
wave speed c as a function of two of the parameters of the problem, the pre-front voltage Vα

and the excitability parameter j. For every value of j and Vα from a certain domain, two
values of the wave speed c are possible, which is similar to the solutions of the caricature
model. The smaller values of c are not observed in the PDE simulation of the full model.
This is a strong indication that they are unstable.

4.2 The condition for propagation

In this subsection, we report numerical values for the threshold of excitability jmin below
which wave fronts are not sustainable and have to dissipate, as predicted by the reduced
three-variable model of Eqs. 7–8. Figure 8 presents jmin as a function of the pre-front
voltage Vα. The curve jmin(Vα) represents a boundary in the space of the slow variables (V, j)
which separates the region of relative refractoriness where excitation fronts are possible, even
though possibly slowed down, from the region of absolute refractoriness where excitation
fronts cannot propagate at all. In practice, however, we can reduce the condition of the
absolute refractoriness even further. This is possible because typical APs have their tails very
closely following one path on the (V, j) plane. This property is known for cardiac models;
e.g. [36] presents an evidence for the Modified Beeler-Reuter model that the dynamics of
recovery from an AP do not depend on details of how that AP has been initiated. Therefore
of the whole curve (V, jmin(V )) only one point is important, its intersection with the curve
(V (t), j(t)) representing a typical AP tail. For the model Courtemanche et al. [6] considered
here, we simply state the existence of this universal (V (t), j(t)) curve as an ”experimental
fact”. This is illustrated in Fig. 8 where we plot the curve (V, jmin(V )) together with
projections of a selected set of AP trajectories. The AP solutions were obtained for a space-
clamped version of [6] with initial conditions for j and V as shown in the figure and all
other variables in their resting states. These trajectories allow us to follow the correlation
between the transient of j and the AP V . Indeed, in the tail of an AP solution, the curve
j vs V is almost independent of the way the AP is initiated. As a result, the projections
of the trajectories (V (t), j(t)) intersect the critical curve (Vα, jmin(Vα)) in a small vicinity
of one point, (j∗, V∗) = (0.2975 ± 0.0015,−72.5 ± 0.5). This result suggests the following
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Figure 8: The thick solid line represents the threshold value jmin for excitation failure as a
function of Vα for the model given by Eqs. 7. The dotted lines represent projections of AP
trajectories in the space-clamped detailed model of [6].

interpretation. As a wave front propagating into the tail of a preceding wave reaches a
point in the state corresponding to this ”absolute refractoriness” point (j∗, V∗), it will stop
because of insufficient excitability of the medium, and dissipate.

In a broader context, in the front propagation speed c is a function of j and V in the
relative refractoriness region of the (V, j) plane, so the highly correlated dependencies of V (t)
and j(t) in the wake of an AP mean that c at a particular point becomes a fixed function
of time. This makes it possible to describe c in terms of the diastolic interval (DI), i.e the
time passed after the end of the preceding AP. This dependence, known as dispersion curve
or velocity restitution curve, is an important tool in simplified analysis of complex regimes
of excitation propagation [44–48].

4.3 Propagation block in two dimensions

In two spatial dimensions, the condition of dissipation j < j∗ may happen to a piece of a
wave front rather than the whole of it. In that case we observe a local block and a break-up
of the excitation wave. Figure 9 shows how it happens in a two-dimensional simulation of
the detailed model of Courtemanche et al. [6]. A spiral wave was initiated by a cross-field
protocol. This spiral wave develops instability, breaks up from time to time, and eventually
self-terminates. This is one of the simulations discussed in detail in [35]. Here we use
it to test our newly obtained criterion of propagation block. The red colour component
represents the V field, white for the resting state and maximum for the AP peak. This is
superimposed onto an all-or-none representation of the j field, with black for j > j∗ and
blue for j ≤ j∗. Thus the red rim represents the ‘active front’ zone where excitation has
already happened but j gates are not de-activated yet; most of the excited region is in
shades of purple representing the gradual decay of the AP with j deactivated. The wave
ends up with a blue tail, which corresponds to V already close to the resting potential but
j not yet recovered and still below j∗. So the blue zone is where there is no excitation,
but propagation of excitation wave is impossible, i.e. absolutely refractory zone. The black
zone after the tail and before the new front is therefore relative refractory zone, where front
propagation is possible. Thus, in terms of the colour coding of figure 9, the prediction of the
theory is: the wavefront will be blocked and dissipate where and when it reaches the blue
zone, and only there and then. This is exactly what happens in the shown panels: the red
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Figure 9: Local propagation block, dissipation and break-up of the front of a re-entrant excita-
tion wave. The density plots represent the distribution of the transmembrane voltage V (red
component) in regions of super-threshold (white) and of sub-threshold (blue) excitability j. The
white arrow indicates the time and place the propagation block begins. The time increases from
(A) to (F) with ∆t = 20 ms; size of the simulation domain is 75 mm× 75 mm.

front touches the blue tail, first at the third panel, at the point indicated by the white arrow,
and subsequently in its vicinity. The excitation front stops in that vicinity and dissipates.
So we have a break-up of the front.

The analysis of the numerics, which ran for the total of 7400 ms until self-termination
of the spiral and showed 4 episodes of front break-up, has confirmed that in all cases the
break-up happened if and only if the front reached the blue region j ≤ j∗.

4.4 Curvature effects

Since we attempt to compare the results of our one-dimensional model to simulations of
spiral waves in two-dimensions, it is important to explore the dependence of the solution
on the curvature of the front. The standard theory says that in two dimensions the normal
velocity of the wave front need to be corrected by the term λK where λ is the typical width
of the wave front [28]. The speed-curvature diagram presented in Fig. 10(a) shows that in
our simplified model this relationship is satisfied to rather large values of |K|. Our choice
of boundary conditions in Eqs. 8 assumes that the excitation fronts propagate from right
to left, so positive values of the curvature correspond to concave fronts. Only at very small
values of the radius of curvature of the order of 0.3 mm for j = 1 the wave speed shows a
non-linear dependence on curvature as seen in the insert Fig. 10(b). This part of the figure
also demonstrates that there is a critical value of the curvature for which the excitation wave
stops to propagate as well as an unstable branch of the solution. However, these phenomena
occur at very large curvatures which are far outside of the range of values of |K| < 0.1mm−1

observed in the two-dimensional simulations of Fig. 9.
The most important question with respect to our study is whether the curvature changes

significantly the critical value of the excitation parameter j∗ below which the wave fronts
fail to propagate. To answer this question we present Fig. 10(c) in which the wave speed c
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Figure 10: (A) and (B) The wave speed C for the model of Eqs. 7, 8 as a function of the
curvature for values of j = 1 . . . 0.4 (from top to bottom). Results for the detailed model [6] are
denoted by thick solid lines. (C) The wave speed C in the model given by Eqs. 7 as a function
of j for K = 0.1, 0 and −0.1 mm−1 (from top to bottom).

is shown as a function of j for three values of the curvature corresponding to a non-curved
front and to convex and concave fronts with radius of curvature equal to 10 mm. The values
of jmin for these three cases differ only slightly. So, the propagation blocks in our simulations
do not depend significantly on the curvature of the front.

This conclusion is valid for the particular cardiac model [6] and for the particular context.
In [49], the minimal diastolic interval, defined as time from the moment V = −50 mV to
the moment propagation becomes possible again, depended only slightly on curvature for
the Modified Beeler-Reuter model at standard parameters, but was much more pronounced
when τj was artificially increased 6-fold. The simplest explanation of this difference is that
the small variation of jmin due to the curvature takes much longer for j(t) to make if ∂j/∂t
is very small, so even that small variation jmin becomes significant.

5 Conclusions

In this paper, we have shown that propagation of excitation and its block in Courtemanche
et al. [6] model of human atrial tissue can be successfully predicted by a simplified model
of the excitation front, obtained by an asymptotic description focussed on the fast sodium
current, INa. Whereas it was known that main qualitative features of the INa-driven fronts
can be described by a two-component model for V and h, we have now found that for good
quantitative predictions, one must also take into account the dynamics of m gates. Thus,
we have proposed a three-component description of the propagating excitation fronts given
by Eqs. 4. We have obtained an exact analytical solution for piecewise-linear ‘caricature’
three-component model of Eqs. 4. For an appropriate choice of parameters, it reproduces the
key qualitative features of the accurate three-component model of Eqs. 4 and gives a correct
order of magnitude quantitatively. Numerical solution of the automodel equation of the
proposed three-component model of Eqs. 4 gives a very accurate prediction of propagation



Conditions for propagation in atrial tissue 17

block in two-dimensional re-entrant waves. For the given model, this reduces to a condition
involving the pre-front values of V and j, or even in terms of j alone. This provides the
sought-for operational definition of absolute refractoriness in terms of j, simple and efficient.

The success of the propagation block prediction justifies the assumptions made on the
asymptotic structure, i.e. appearance of the small parameter ε, of Eqs. 2, and also confirms
that two-dimensional effects, e.g. front curvature, do not significantly affect the propagation
block conditions, at least in the particular simulation.

As the description and role of INa are fairly universal in cardiac models, most of the results
should be applicable to other models. However, some other cardiac models may require a
more complicated description. For instance, the contemporary ‘Markovian’ description of
INa [50, e.g. ] is very different from the classical m3jh scheme. Also, propagation in
ventricular tissue in certain circumstances can be essentially supported by L-type calcium
current rather than mostly INa alone [51].

A Numerical method

For a numerical solution the problem needs to be formulated on a finite interval z ∈
[zmin, zmax] rather than on the open interval z ∈ (−∞,∞). Furthermore, because of the
piecewise definition of the problem this interval must be separated in three parts [zmin, 0],
[0, ξ] and [ξ, zmax] as discussed in the beginning of section 3. The standard numerical meth-
ods we use require that the problem is posed on a single interval, for instance y ∈ [0, L]. So
we use the mapping,

[0, L] 3 y =

 −z, z ∈ [zmin, 0],
(ξ/L) z, z ∈ [0, ξ],
z − ξ, z ∈ [ξ, zmax],

(19)

to transform Eqs. 7 as follows

V ′′
1 = −(c− κ) V ′

1 + gNa(VNa − V1) j h1 m3
1,

h′1 = −
(
c τh(V1)

)−1(1− h1

)
,

m′
1 =

(
c τm(V1)

)−1
m1,

V ′′
2 =

(
(c− κ)V ′

2 − gNa(VNa − V2) j h2 m3
2

)
/p,

h′2 = −
(
p c τh(V2)

)−1
h2,

m′
2 = −

(
p c τm(V2)

)−1
m2, (20)

V ′′
3 = (c− κ) V ′

3 − gNa(VNa − V3) j h3 m3
3,

h′3 = −
(
c τh(V3)

)−1
h3,

m′
3 =

(
c τm(V3)

)−1(1−m3),
c′ = 0,
p′ = 0, where p ≡ ξ/L

V ′
ω = 0,

where the subscripts 1, 2 and 3 denote the variables corresponding to the three subintervals.
Here, the end of the second subinterval ξ is an unknown parameter and together with the
wave speed c and the post-front voltage Vω must be determined as a part of the solution.
Because these unknowns are constants, their derivatives must vanish which leads to the
introduction of the last three equations in Eqs. 20.
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The boundary conditions in Eqs. 8 at infinity are substituted by(
u
)

zmin,zmax

=
(
u
)

(∓∞)
+ v, (21)

where u is the vector of unknown variables and v is a vector of small perturbations, obtained
as a solution of Eqs. 7 linearised about Eqs. 8. Together with the implicit assumptions
V (0) = Vm and V (ξ) = Vh which break the translational invariance and the additional
requirements that the solutions must be continuous functions of z and that V (z) must be
smooth, the necessary 15 conditions are

V1(0) = Vh, V2(0) = Vh, V3(0) = Vm,

V ′
1(0) = −p(0)V ′

2(0), h1(0) = h2(0), m1(0) = m2(0),
V ′

3(0) = p(L) V ′
2(L), h3(0) = h2(L), m3(0) = m2(L),

V ′
1(L) = −(c(L)− κ)

(
V1(L) + Vα

)
, V2(L) = Vm, (22)

V3(L) = −
(
V3(L)− Vω(L)

)
/
(
c(L) τh

(
V3(L)

))
,

h1(L) = 1, m1(L) = 0,

h3(L) =
V ′

3(L)
gNa j

(
VNa − V3(L)

) ( 1
c(L) τh

(
V3(L)

) + (c(L)− κ)

)
.

We use the boundary-value problem solver D02RAF of the NAG numerical library which em-
ploys a finite-difference discretization coupled to a deferred correction technique and Newton
iteration [52]. The analytical solution given in Eqs. 10 is used as an initial approximation
to start the correction process. The method proves to be very robust over a large range of
parameters.

The authors are grateful to I.V. Biktasheva for sharing her experience of simulation of
model [6], to H. Zhang and P. Hunter for inspiring discussions related to this manuscript
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