Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system
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We consider a system of partial differential equations describing two spatially distributed populations in a
“predator-prey” interaction with each other. The spatial evolution is governed by three processes, positive taxis
of predators up the gradient of prey (pursuit), negative taxis of prey down the gradient of predators (evasion)
and diffusion resulting from random motion of both species. We demonstrate a new type of propagating wave
in this system. The mechanism of propagation of these waves essentially depends on the taxis and is entirely
different from waves in reaction-diffusion system. Unlike typical reaction-diffusion waves, which annihilate on
collision, these “taxis” waves can often penetrate through each other and reflect from impermeable boundaries.

PACS numbers: 87.10.+e

Behavior in the form of solitary propagating waves is typ- “predator-prey” relationship with each other. The spatial evo-
ical for many spatially extended nonlinear dissipative sysdution is governed by three processes, positive taxis of preda-
tems. Solitary waves that remain unchanged after collisiortors up the gradient of prey (pursuit) and negative taxis of prey
with each other are less typical and are known only for a rathedown the gradient of predators (evasion), yielding nonlinear
narrow class of nonlinear dissipative media [1]. In this re-“cross-diffusion” terms, and random motion of both species
spect, such waves are analogous to the solitons in conservatig@iffusion). In this paper we consider the problem in one spa-
systems, whose study, as stable particle-like waves of nonlirtial dimension;z, using the equations

ear systems, remain a key interdisciplinary topic of modern P 2P 9 o7
mathematical physics. In the present paper we demonstrate 5 = f(P,Z)+ DW + h_%P%,
soliton-like behavior in a class of waves, which can exist in 07 27 9 op
population dynamics models as a consequence of taxis. e g(P,Z) + D@ - h+%Z%, 1)

Spatio-temporal dynamics of interacting populations argyherep is the density of the prey populatiod,is the density
often described in terms of reaction-diffusion systems, thags e predator population]) is their diffusion coefficients,

ta';? intofa;ﬁcount local dyréatnhﬂc_s, inglludir;gdgrowth gr_ld interfor simplicity considered constant, uniform and equal for both
action of the species, and their undirected spread in spac inc 0 (PIZ 8 (70P ; i
e.g. resulting from individual random motions. However gpeCIeS'Q‘”-(P o) and o (z 8—“") re taxis terms [ s

0 e ) ] '“V&h the coefficient of negative taxis @t on the gradient ofZ, h
one characteristic feature of living systems is their ability t0;5 the coefficient of positive taxis of on the gradient of.
react to changes of the environment, and to move towards, \we choose as local kinetics functiofigP, Z) andg(P, Z)
or away from, an environmental stimulus, behavior knownthe Holling type 11l form used by Truscott and Brindley [11]

as taxis. Examples are chemotaxis, phototaxis, thermotaxi§ yescribe the population dynamics of phytoplanki®nand
and gyrotaxis [2, 3]. Many models of spatial dynamics szooplanktonZ:

populations take taxis into account, and its importance has 0o o

been recognized in modeling various biological and ecolog- f(P.Z) = BP(1—P)—ZP*/(P" +v7),

ical processes, including propagation of epidemics, bacterial g(P,Z) = ~vZP?/(P?* + %) —wZ. )
population waves, aggregation in the cellular slime nrigict Itis known that these kinetics demonstrate “excitable” behav-

tyostelium discoideuyrdynamics of planktonic communities ior, and the reaction-diffusion system (L), — 0, with these

_and of insect populatlons. [2, 4, 5]_' Th_e existence of traVel'terms has propagating solitary wave solutions [11, 12]. We
ing waves, and also stationary spatially-inhomogeneous stru

o . . . . fiow show how inclusion of the taxis terms can alter the prop-
tures, in interacting populations with taxis has been demon-

trated . all dth tically 16-10 erties of such solutions.
strated experimentally and theoretically [6-10]. Though predator-prey systems, with one or both popula-

Here we consider a system of partial differential equa-tions demonstrating “intelligent” taxis have been studied be-
tions describing two spatially distributed populations in afore, by means of individual-based Monte-Carlo simulations
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FIG. 1: (a—f) The profiles of waves with = 0.04 and different taxis coefficients+ (ath_ = 0, h. = 1 solitary wave solutions do not

exist). The different shape of the profiles is an evidence of different propagation mechanisms involved. Note the oscillatory onset of the pu
front when bothhy > 0, h— > 0. (g,h) The oscillatory onset of the front of the pulse of (f), magnified. The horizontal lines are at the steady
state levels( Py, Zo). The theoretical value for the oscillation half-lengthig56 . . ..

[13] and by using partial differential equations [14-16], our sity of predators in surrounding areas, and the conditions of
objective here to isolate and identify the specific role of theequilibrium will be violated. Decreased density of predators
taxis terms in creating novel behavior. will temporarily encourage growth of prey, followed by influx

Details of the model and numerical methodgnless spec-  Of predators, and the same sequence of events occurs progres-
ified otherwise, we have calculated solutions to equation§ively at each point in the spatiat)direction, constituting a

(1,2) with the following parameter value$) = 0.04, v = traveling wave in the population pattern. Note that no diffu-
0.07,6=1,~v=0.01,w = 0.004, h, = 1andh_ = 1. The  sion of either prey or predators is required; the phenomenon
ranges of values of, v, w were based on those in [12]. requires only the presence of taxis terms in equation (1).

Three finite difference schemes were used, differing in their  The “eXCit‘_";.ble". cha;ar::telr of It_he kinetics in (f2)h|eads toa
approximation of the taxis termfu — Lu(z,¢)230.  Stong magnification of the localized increase of the prey pop-

Iz gz . ulation, through the prey-escape mechanism (prey multiply

scheme A: the central implicit scheme [17]; scheme B: an “up]c ter th dat This feat p is al fal
wind” explicit scheme, and scheme C: an “upwind” implicit aster than preda (_)rs). IS Teature, of colrse, IS aiso essentia
r solitary waves in purely diffusive systems.

scheme (see e.g. [18] for the discussion of upwind schemesfp . . :
An unusual feature of taxis waves is the oscillatory char-

. L s , rhcter of the front, see fig. 1(g,h): spatial non-monotonicity

discretization stgpéa: =0.1,0t =5 > 107 for most figures of wavefront, which, however, propagates with a constant
or scheme B W'.thsx. = 0.5 andot = 0.01 for Iarge-scale_ speed’. Since these oscillations have a small amplitude, they
parametric stud|e§ fig. 3(a—e). Selected control CaICUIat'onéan be described by linearized theory. Indeed, in a steadily
used scheme B with smaller steps, dowdto= 0.01, §t = propagating wave with speed variablesP and Z depend

—6 i _ _ -3
4x .10 »and scher_nes Aand C witiy = 0'91’ (_St = 107" only on the combinatiog = = — ct, and satisfy the “auto-
Different mechanisms of wave propagatioRig. 1 shows  model” system

the stationary profiles of population waves in a purely

reaction-diffusion case (a) and with addition of taxis terms (P, 7) D(Pl L ipdﬁ dr 0

(b-f). The taxis terms significantly change the shape of the F(P2) + de? T Tdé de Te d¢e 7
profiles. The value of the pursuit coefficieht. has .much _ 427z d _dP dz

more pronounced effect than the value of the evasion coeffi- 9(P, Z) + Ddigg - h+d7§Zd7§ + ‘U 0. (3

cienth_. If only evasion {_ > 0) but no pursuit f.. = 0)

added, waves tend to retain the same shape as purely diffusiiéne speed of the wave in fig. 1(f) is = 0.3535, and
waves, with long and smooth plateaus. The addition of purthe steady-state values of the variables Bse= 0.05703,
suit (b > 0) adds distinctive features, e.g. nhon-monotonicZ, = 0.13480. With these parameters, a straightforward cal-
behavior of predators around the front and/or the back of theulation gives solutions in the for, Z) (&) ~ (P, Zo) +
wave. Here we suggest a qualitative explanation of wav&ke [(Py, Z1)e*], | Py, Z1| < |Po, Zo|, with Ay o &~ 1.9925+
shape change in terms of the pursuit tefm)only. Ahead of ~ 2.5014:. This predicts the half-length of oscillations alofig
the wave, the system is at its stable equilibrium. Consider theoordinate ofr/Im()\; 2) ~ 1.256, in a good agreement with
effect of a local increase of the prey densityabove the equi- the observed shape, see fig. 1(g,h). This means that these os-
librium. The resulting flux of predators to the area, describectillations are not a numerical artifact. Note that in an ideal
by the taxis term with the coefficient,, will deplete the den-  stationary profile there will be an infinite number of oscilla-



tions, of explonentially decaying amplitude. ) 10’

An important feature of solitary taxis waves is the unifor- 15| 145 o o o v -
mity of their shape, amplitude and speed: after a transient, = | 12p o e v e e
these are the same, regardless of the details of the initial con- ! 10 ¢ /
ditions. In this they are similar to reaction-diffusion excitation 0.5 g8 <o o . o
waves and different from solitons in conservative systems. 0 6 k——————lp
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FIG. 2: Space-time density plots showing interaction of waves in (a)
purely diffusive and (b) taxis cases. On both panels, the length of the
interval L = 300, the time scale € [0, 2200]. Black corresponds to
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(e)y = 0.016, D

Quasi-soliton interaction of pulsesWe have found that
the system (1,2) has a region of parameters where solitar&/IG 3 P " , ding to different reai
waves interact as solitons. That is, they do not annihilate, as e 3 (3-€) Parametric regions corresponding to different regimes

ion-diffusi | v do. b h h Of taxis waves. Solid circles: quasi-solitons. Hollow circles: annihi-
reaction-diffusion pulses usually do, but penetrate through, 0I':";lting pulses. Dots: there is no stable propagation of pulses. Crosses:

reflect from, each other (since the waves are indistinguishabl@scillatory local kinetics. (f) Wave propagation velocity as function
these two terms mean the same thing). Fig. 2 shows resultg the square root of the diffusion coefficient. Solid line and the up-
of simulations in an interval of finite length with no-flux per row of symbols:y = 0.016, h = 1, h- = 5. Dotted line
boundary Condition%H:o,L =0 and‘g—f\mzo,L = 0. Two  and the lower row: standard parameter values. In reaction-diffusion
waves were initiated simultaneously, one at each end of th&yStems, this dependence is always a straight line.
interval; the results are shown as density plots. In the purely
diffusive case, panel (a), the waves annihilate at the collision.
With the taxis terms included, panel (b), the waves penetrat@aves. Fig. 3d shows that annihilating and reflecting waves
through each other on collision, and are then reflected fron§Xist in absence of diffusion. Fig. 3e shows an example that
the boundaries. propagating waves do not exist in a purely diffusive medium,
Soliton-like interactions of solitary waves have been ob-but only taxis makes the propagation possible.
served in some reaction-diffusion systems with excitable ki- Fig. 3(f) shows dependence of the wave propagation veloc-
netics, both in numerics [19-24] and in experiments [24, 25]ity on the diffusion coefficienD. This dependence is clearly
Such interactions are always limited to narrow parameteflifferent from oc D'/2 law obeyed by reaction-diffusion
ranges close to the boundaries between excitable and oscwaves. There is a marked change of this dependence near the
latory (limit cycle) regimes of the reaction kinetics. transition between annihilating and reflecting waves, which is
In contrast, fig. 3(a—e) shows regions in the parameter spadt another evidence of different mechanism of taxis waves,
corresponding to different regimes of interaction and prop-especially of quasi-solitons.
agation of taxis waves described by equations (1,2). Both Fig. 4 illustrates the mechanism of reflection of two collid-
the existence of steady propagating pulses and their ability ting taxis waves (reflection of a single wave from a non-flux
penetrate/reflect have a complex relationship with the kinetiboundary is mathematically equivalent to a half of this pic-
and propagation parameters. However, it is quite clear thaure). As noted above, a feature of taxis waves is low level
the ranges of parameters providing soliton-like behavior ar®f predators ahead of the prey wave, as the predators are at-
not in any sense narrow, and do not require proximity to thdracted backwards by the prey density gradient. This back-
oscillatory kinetics. Although large enougdty is typically  ward gradient of predators encourages the forward movement
sufficient for propagation of waves, quasi-soliton behavior re-of prey (see = 31). The meeting of two prey waves creates
quires bothh . andh_. Figs. 3(d,e) provide further evidence a high peak of prey density (= 31...41). This higher lo-
of a completely different mechanism of propagation of taxiscal density of prey attracts predators, which abandon the mar-
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FIG. 4: Mechanism of reflection of two taxis waves. Solid linfs:dashed linesZ; v = 0.016, D =0, hy = 1, h— = 5.

gins of the collision zonet(= 36...41). The local growth  here are, for sufficiently strong taxis, totally different in char-
of predators causes escape of the prey from the center of tteeter and mechanism from the much more widely studied
collision zone towards the margins abandoned by the predavaves in “simple” reaction-diffusion systems.
tors. These events inverse the gradients of the populations This study was supported by EPSRC grant GR/S08664/01.
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