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We consider a system of partial differential equations describing two spatially distributed populations in a
“predator-prey” interaction with each other. The spatial evolution is governed by three processes, positive taxis
of predators up the gradient of prey (pursuit), negative taxis of prey down the gradient of predators (evasion)
and diffusion resulting from random motion of both species. We demonstrate a new type of propagating wave
in this system. The mechanism of propagation of these waves essentially depends on the taxis and is entirely
different from waves in reaction-diffusion system. Unlike typical reaction-diffusion waves, which annihilate on
collision, these “taxis” waves can often penetrate through each other and reflect from impermeable boundaries.

PACS numbers: 87.10.+e

Behavior in the form of solitary propagating waves is typ-
ical for many spatially extended nonlinear dissipative sys-
tems. Solitary waves that remain unchanged after collision
with each other are less typical and are known only for a rather
narrow class of nonlinear dissipative media [1]. In this re-
spect, such waves are analogous to the solitons in conservative
systems, whose study, as stable particle-like waves of nonlin-
ear systems, remain a key interdisciplinary topic of modern
mathematical physics. In the present paper we demonstrate
soliton-like behavior in a class of waves, which can exist in
population dynamics models as a consequence of taxis.

Spatio-temporal dynamics of interacting populations are
often described in terms of reaction-diffusion systems, that
take into account local dynamics, including growth and inter-
action of the species, and their undirected spread in space,
e.g. resulting from individual random motions. However,
one characteristic feature of living systems is their ability to
react to changes of the environment, and to move towards,
or away from, an environmental stimulus, behavior known
as taxis. Examples are chemotaxis, phototaxis, thermotaxis
and gyrotaxis [2, 3]. Many models of spatial dynamics of
populations take taxis into account, and its importance has
been recognized in modeling various biological and ecolog-
ical processes, including propagation of epidemics, bacterial
population waves, aggregation in the cellular slime moldDic-
tyostelium discoideum, dynamics of planktonic communities
and of insect populations. [2, 4, 5]. The existence of travel-
ing waves, and also stationary spatially-inhomogeneous struc-
tures, in interacting populations with taxis has been demon-
strated experimentally and theoretically [6–10].

Here we consider a system of partial differential equa-
tions describing two spatially distributed populations in a

“predator-prey” relationship with each other. The spatial evo-
lution is governed by three processes, positive taxis of preda-
tors up the gradient of prey (pursuit) and negative taxis of prey
down the gradient of predators (evasion), yielding nonlinear
“cross-diffusion” terms, and random motion of both species
(diffusion). In this paper we consider the problem in one spa-
tial dimension,x, using the equations
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whereP is the density of the prey population,Z is the density
of the predator population,D is their diffusion coefficients,
for simplicity considered constant, uniform and equal for both
species,∂
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are taxis terms [7],h− is

the coefficient of negative taxis ofP on the gradient ofZ, h+

is the coefficient of positive taxis ofZ on the gradient ofP .
We choose as local kinetics functionsf(P,Z) andg(P,Z)

the Holling type III form used by Truscott and Brindley [11]
to describe the population dynamics of phytoplankton,P , and
zooplankton,Z:

f(P,Z) = βP (1− P )− ZP 2/(P 2 + ν2),
g(P,Z) = γZP 2/(P 2 + ν2)− wZ. (2)

It is known that these kinetics demonstrate “excitable” behav-
ior, and the reaction-diffusion system (1),h± = 0, with these
terms has propagating solitary wave solutions [11, 12]. We
now show how inclusion of the taxis terms can alter the prop-
erties of such solutions.

Though predator-prey systems, with one or both popula-
tions demonstrating “intelligent” taxis have been studied be-
fore, by means of individual-based Monte-Carlo simulations



2

 0
 0.2
 0.4
 0.6
 0.8

 1

 30  40  50  60  70  80  90
x

P,Z

 0
 0.2
 0.4
 0.6
 0.8

 1

 70  80  90  100  110  120  130
x

P,Z

 0
 0.2
 0.4
 0.6
 0.8

 1

 70  80  90  100  110  120  130
x

P,Z

 0.056

 0.057

 0.058

 61  63  65

1.25
x

P

(a)
�����������
	

(b)
������	�
�������	����

(c)
�����
	�
�������	�� �

(g)
�������������

 0
 0.2
 0.4
 0.6
 0.8

 1

 60  70  80  90  100  110  120
x

P,Z

 0
 0.2
 0.4
 0.6
 0.8

 1

 30  40  50  60  70  80  90
x

P,Z

 0
 0.2
 0.4
 0.6
 0.8

 1

 30  40  50  60  70  80  90
x

P,Z

0.130
0.135
0.140

 60  62  64

1.23
x

Z

(d)
� � ����
�� � ��	

(e)
� � ����
�� � ��	�� �

(f)
� � �
� � ���

(h)
� � ��� � ���

FIG. 1: (a–f) The profiles of waves withD = 0.04 and different taxis coefficientsh± (at h− = 0, h+ = 1 solitary wave solutions do not
exist). The different shape of the profiles is an evidence of different propagation mechanisms involved. Note the oscillatory onset of the pulse
front when bothh+ > 0, h− > 0. (g,h) The oscillatory onset of the front of the pulse of (f), magnified. The horizontal lines are at the steady
state levels,(P0, Z0). The theoretical value for the oscillation half-length is1.256 . . ..

[13] and by using partial differential equations [14–16], our
objective here to isolate and identify the specific role of the
taxis terms in creating novel behavior.

Details of the model and numerical methodsUnless spec-
ified otherwise, we have calculated solutions to equations
(1,2) with the following parameter values:D = 0.04, ν =
0.07, β = 1, γ = 0.01, w = 0.004, h+ = 1 andh− = 1. The
ranges of values ofβ, γ, w were based on those in [12].

Three finite difference schemes were used, differing in their
approximation of the taxis termsLu = ∂

∂xu(x, t)
∂S(x,t)

∂x :
scheme A: the central implicit scheme [17]; scheme B: an “up-
wind” explicit scheme, and scheme C: an “upwind” implicit
scheme (see e.g. [18] for the discussion of upwind schemes).

The majority of calculations were based on scheme C with
discretization stepsδx = 0.1, δt = 5× 10−3 for most figures
or scheme B withδx = 0.5 and δt = 0.01 for large-scale
parametric studies fig. 3(a–e). Selected control calculations
used scheme B with smaller steps, down toδx = 0.01, δt =
4× 10−6, and schemes A and C withδx = 0.01, δt = 10−3.

Different mechanisms of wave propagationFig. 1 shows
the stationary profiles of population waves in a purely
reaction-diffusion case (a) and with addition of taxis terms
(b-f). The taxis terms significantly change the shape of the
profiles. The value of the pursuit coefficienth+ has much
more pronounced effect than the value of the evasion coeffi-
cienth−. If only evasion (h− > 0) but no pursuit (h+ = 0)
added, waves tend to retain the same shape as purely diffusive
waves, with long and smooth plateaus. The addition of pur-
suit (h+ > 0) adds distinctive features, e.g. non-monotonic
behavior of predators around the front and/or the back of the
wave. Here we suggest a qualitative explanation of wave
shape change in terms of the pursuit term (h+) only. Ahead of
the wave, the system is at its stable equilibrium. Consider the
effect of a local increase of the prey densityP above the equi-
librium. The resulting flux of predators to the area, described
by the taxis term with the coefficienth+, will deplete the den-

sity of predators in surrounding areas, and the conditions of
equilibrium will be violated. Decreased density of predators
will temporarily encourage growth of prey, followed by influx
of predators, and the same sequence of events occurs progres-
sively at each point in the spatial (x) direction, constituting a
traveling wave in the population pattern. Note that no diffu-
sion of either prey or predators is required; the phenomenon
requires only the presence of taxis terms in equation (1).

The “excitable” character of the kinetics in (2) leads to a
strong magnification of the localized increase of the prey pop-
ulation, through the prey-escape mechanism (prey multiply
faster than predators). This feature, of course, is also essential
for solitary waves in purely diffusive systems.

An unusual feature of taxis waves is the oscillatory char-
acter of the front, see fig. 1(g,h): spatial non-monotonicity
of wavefront, which, however, propagates with a constant
speed’. Since these oscillations have a small amplitude, they
can be described by linearized theory. Indeed, in a steadily
propagating wave with speedc, variablesP andZ depend
only on the combinationξ = x − ct, and satisfy the “auto-
model” system

f(P,Z) +D
d2P

dξ2
+ h−

d
dξ
P

dZ
dξ

+ c
dP
dξ

= 0,

g(P,Z) +D
d2Z

dξ2
− h+

d
dξ
Z

dP
dξ

+ c
dZ
dξ

= 0. (3)

The speed of the wave in fig. 1(f) isc = 0.3535, and
the steady-state values of the variables areP0 = 0.05703,
Z0 = 0.13480. With these parameters, a straightforward cal-
culation gives solutions in the form(P,Z)(ξ) ≈ (P0, Z0) +
Re

[
(P1, Z1)eλξ

]
, |P1, Z1| � |P0, Z0|, with λ1,2 ≈ 1.9925+

2.5014i. This predicts the half-length of oscillations alongξ
coordinate ofπ/Im(λ1,2) ≈ 1.256, in a good agreement with
the observed shape, see fig. 1(g,h). This means that these os-
cillations are not a numerical artifact. Note that in an ideal
stationary profile there will be an infinite number of oscilla-
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tions, of explonentially decaying amplitude.
An important feature of solitary taxis waves is the unifor-

mity of their shape, amplitude and speed: after a transient,
these are the same, regardless of the details of the initial con-
ditions. In this they are similar to reaction-diffusion excitation
waves and different from solitons in conservative systems.
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FIG. 2: Space-time density plots showing interaction of waves in (a)
purely diffusive and (b) taxis cases. On both panels, the length of the
intervalL = 300, the time scalet ∈ [0, 2200]. Black corresponds to
P = 0.9, white toP = 0.

Quasi-soliton interaction of pulsesWe have found that
the system (1,2) has a region of parameters where solitary
waves interact as solitons. That is, they do not annihilate, as
reaction-diffusion pulses usually do, but penetrate through, or
reflect from, each other (since the waves are indistinguishable,
these two terms mean the same thing). Fig. 2 shows results
of simulations in an interval of finite lengthL with no-flux
boundary conditions∂P

∂x |x=0,L = 0 and ∂Z
∂x |x=0,L = 0. Two

waves were initiated simultaneously, one at each end of the
interval; the results are shown as density plots. In the purely
diffusive case, panel (a), the waves annihilate at the collision.
With the taxis terms included, panel (b), the waves penetrate
through each other on collision, and are then reflected from
the boundaries.

Soliton-like interactions of solitary waves have been ob-
served in some reaction-diffusion systems with excitable ki-
netics, both in numerics [19–24] and in experiments [24, 25].
Such interactions are always limited to narrow parameter
ranges close to the boundaries between excitable and oscil-
latory (limit cycle) regimes of the reaction kinetics.

In contrast, fig. 3(a–e) shows regions in the parameter space
corresponding to different regimes of interaction and prop-
agation of taxis waves described by equations (1,2). Both
the existence of steady propagating pulses and their ability to
penetrate/reflect have a complex relationship with the kinetic
and propagation parameters. However, it is quite clear that
the ranges of parameters providing soliton-like behavior are
not in any sense narrow, and do not require proximity to the
oscillatory kinetics. Although large enoughh+ is typically
sufficient for propagation of waves, quasi-soliton behavior re-
quires bothh+ andh−. Figs. 3(d,e) provide further evidence
of a completely different mechanism of propagation of taxis
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FIG. 3: (a–e) Parametric regions corresponding to different regimes
of taxis waves. Solid circles: quasi-solitons. Hollow circles: annihi-
lating pulses. Dots: there is no stable propagation of pulses. Crosses:
oscillatory local kinetics. (f) Wave propagation velocity as function
of the square root of the diffusion coefficient. Solid line and the up-
per row of symbols:γ = 0.016, h+ = 1, h− = 5. Dotted line
and the lower row: standard parameter values. In reaction-diffusion
systems, this dependence is always a straight line.

waves. Fig. 3d shows that annihilating and reflecting waves
exist in absence of diffusion. Fig. 3e shows an example that
propagating waves do not exist in a purely diffusive medium,
but only taxis makes the propagation possible.

Fig. 3(f) shows dependence of the wave propagation veloc-
ity on the diffusion coefficientD. This dependence is clearly
different from ∝ D1/2 law obeyed by reaction-diffusion
waves. There is a marked change of this dependence near the
transition between annihilating and reflecting waves, which is
yet another evidence of different mechanism of taxis waves,
especially of quasi-solitons.

Fig. 4 illustrates the mechanism of reflection of two collid-
ing taxis waves (reflection of a single wave from a non-flux
boundary is mathematically equivalent to a half of this pic-
ture). As noted above, a feature of taxis waves is low level
of predators ahead of the prey wave, as the predators are at-
tracted backwards by the prey density gradient. This back-
ward gradient of predators encourages the forward movement
of prey (seet = 31). The meeting of two prey waves creates
a high peak of prey density (t = 31 . . . 41). This higher lo-
cal density of prey attracts predators, which abandon the mar-
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FIG. 4: Mechanism of reflection of two taxis waves. Solid lines:P , dashed lines:Z; γ = 0.016, D = 0, h+ = 1, h− = 5.

gins of the collision zone (t = 36 . . . 41). The local growth
of predators causes escape of the prey from the center of the
collision zone towards the margins abandoned by the preda-
tors. These events inverse the gradients of the populations
and re-create front structures on the margins of the collision
zone (t = 41 . . . 46), which then cause generation of two new,
“reflected” taxis waves (t = 51), which subsequently restore
their normal amplitude (not shown on figure). So, the phe-
nomenon of reflection is stipulated by interaction of both the
pursuit and evasion taxis terms, forming a positive feedback
loop. This explains why the quasi-soliton regions are bounded
away from the coordinate axes on fig. 3(a,d,e).

The interplay and positive feedback between the two taxis
terms can also be elucidated by considering a simple linear
analogue of equations (1):

∂P

∂t
= h−

∂2Z

∂x2
,

∂Z

∂t
= −h+

∂2P

∂x2
, (4)

which are obtained from (1) by puttingf1,2 = D = 0 and re-
moving nonlinearity from the taxis terms. System (4) is equiv-
alent to a Schr̈odinger equation forψ = h

1/2
+ P + ih

1/2
− Z.

This is consistent with oscillatory fronts of taxis waves and
their ability to reflect from each other. The role of nonlinear-
ities appears to be in selecting a unique amplitude and shape
of propagating waves, and restricting, compared to (4), values
of h± that allow reflection. Adding diffusion in (4) destroys
propagating waves, but not necessarily in (1) where its dissi-
pative effect may be compensated by the nonlinear kinetics.

Conclusions. We have studied a spatially distributed
predator-prey system of equations, in which, in addition to or
instead of diffusion terms, we have included terms describing
taxis of the species on each other’s gradient: predators pursu-
ing prey, and prey escaping predators. We have found that the
taxis terms change the shape of the propagating waves and in-
crease the propagation speed, which is an evidence of a differ-
ent mechanism of propagation of these waves. In this change
the major role is played by the pursuit terms. Also, the taxis
terms can change the interaction between propagating waves,
i.e. make them penetrate/reflect, rather than annihilate. For
this effect, both pursuit and evasion terms are essential.

Quasi-soliton interaction of taxis waves has some experi-
mental evidence. In [26], such interaction of bacterial popula-
tion taxis waves was observed in vitro, where colliding waves
continued to propagate after collision without delay.

Though our results are motivated by predator-prey systems,
they illustrate the possible dramatic consequences of the in-
clusion of taxis terms in the model. The waves demonstrated

here are, for sufficiently strong taxis, totally different in char-
acter and mechanism from the much more widely studied
waves in “simple” reaction-diffusion systems.
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