Computation of the response functions of spiral wavesin active media
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Rotating spiral waves are a form of self-organization obsgrin spatially extended systems of physical,
chemical, and biological nature. A small perturbation esugradual change in spatial location of spiral’s
rotation center and frequency, i.e. drift. The responsetfans (RFs) of a spiral wave are the eigenfunctions
of the adjoint linearized operator corresponding to theéoal eigenvalues\ = 0, +iw. The RFs describe the
spiral’s sensitivity to small perturbations in the way tlaspiral is insensitive to small perturbations where
its RFs are close to zero. The velocity of a spiral’s drift isgortional to the convolution of RFs with the
perturbation. Here we develop a regular and generic methodnoputing the RFs of stationary rotating spirals
in reaction-diffusion equations. We demonstrate the nitthothe FitzHugh-Nagumo system and also show
convergence of the method with respect to the computatfmaraimeters, i.e. discretization steps and size of the
medium. The obtained RFs are localized at the spiral’s core.

PACS numbers: 02.70.-c, 05.10.-a, 82.40.B},82.40.CK,B7e
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I. INTRODUCTION wherep(7 — R),d(7 — R) are polar coordinates centered at
R, vectorR = (X,Y)T defines the center of rotation, arid
Autowave vortices, or spiral waves in two-dimensions (2D),is the initial rotation phase. For a stead, rigidly rotating,
are types of self-organization observed in dissipativeimefl ~ spiral R and ® are constants. The system of reference co-
physical [1-4], chemical [5-7], and biological nature [8};1 rotating with the spiral’s initial phase and angular vetpci
where wave propagation is supported by a source of energground the spiral’s center of rotation is called the systém o
stored in the medium. The common feature of all these phereference of the spiral. In this system of referenge= 0,
nomena is that they can be mathematically described, witkb = 0, and the polar angle is given ly= ¢ + wt. In this
various degrees of accuracy, by reaction-diffusion pldifa ~ frame the spiral wave solutiobl(p, §) does not depend on

ferential equations, time and satisfies the equation
du=f(u)+DV?u, ufecR DeR> (>2 (1) f(U) — wUy + DV?U = 0. 3)
where u(7,t) = (u1,...us)T is a column-vector of the In this equation, the unknowns are the fi@p, §) and the

scalarw.

. B T )
reagent concentration$(u) = (f1,...f¢) is a column A slightly perturbed steady spiral wave solution

vector of the reaction rateR) is the matrix of diffusion coef-
ficients, a.nd?e R2is the_ vect.or of coordinatgs on thg plgne. Ulp,0,t) = U(p,0) +eg(p,0,1), geR', 0<e<1,

The existence of vortices is not due to singularities in the _ . _ o _
medium but is determined only by development from initial substituted in (1), at leading order in yields the evolution
conditions. A rigidly rotating spiral wave solution to thgss  equation for the perturbatiag

tem (1) has the form 5
Org = 0uf(U)g — wdyg + DV-g.

U =U(p(7 = R),9(" = R) + wt — ), (2) Thus, the linear stability spectrum of a steady spiral
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The operatol has critical Re (A) = 0) eigenvalues (of course,F._; = F}). Here(-, -) stands for the scalar prod-
. . uct in functional space,
Ap =inw, n=0,%1, (6)

which correspond to eigenfunctions related to equivagaric (w, v) = /WTV(F) d27
(1) with respect to translations and rotations, “Goldstone ’ '
modes” (GMs) [14-17] R
VO = —g,U(p, ), The kernelsW (™) of convolution-type integrals in (12) are
1 o the spiral wave'sesponse functions (RFs), i.e., the critical
vED = —5‘5 ? (9, F1p™') U(p,0). (7) eigenfunctions

The stability spectra of steady spiral waves was originaily LW -, W (13)
tained numerically by Barkley [16]. Subsequently the spec- = Hn ’
trum was analysed for infinite and large bounded domains by,nere
Sandstede and Scheel [18-20] with follow-on numerical in-
vestigations by Wheeler and Barkley [21] confirming the éarg tn = —iwn, n=0,=£1, (14)
domain behavior of the stability spectrum.

In a slightly perturbed problem of the adjoint linearized operator:

_ 2 14
Ou=1f(u)+DV u+eh, heR" 0<e<l1, (8) £+:DV2+w39+(8uf(U))T, (15)

where ch(u, 7, ¢) is some small perturbation, spiral waves )
may drift, i.e.change rotational phase and/or center locationchosen to be biorthogonal
Then, the center of rotation and the initial phase are nodong

x t j k
constants but become functions of tim#, = R(t) and <W('7) , V! )> = 0j ks (16)
O = O(1).
In Iin(e)ar approximation, assuming that to the Goldstone modes (7). Note that the RFs do not depend
o on time,i.e. are functions of the coordinates only, in the co-
R, ® = O(e), rotating system of reference.

The asymptotic theory just outlined reduces the descriptio
N B B of the smooth dynamics of spiral waves from the system of
U =U(p(F—R(t)),H7—R(t))+wt—D(t))+eg(r,t), (9)  nonlinear partial differential equations (1) to the systefror-
dinary differential equations (11), describing the movame
of the core of the spiral and the shift of its angular velacity
Several qualitative results in the asymptotic theory ofapi
and scroll dynamics have been obtained without the use of re-
sponse functiong.g. [15, 17, 22—-30]. However, an explicit
knowledge of RFs makes possible a quantitative description
(0 — DV? —0,f(U))g which obviously can be much more efficient for the under-

. 1, 2 . standing and control of spiral wave dynamics in numerous ap-
=h(u,m1) - E(R' V+20)U. (10 plications.e.g. control of re-entry in the heart.

The asymptotic properties of the RFs at large distances
holm alternative, re-written in the spiral frame of refezen ~ &re crucial for convergence of the con_volution integrals in
requires that the free term must be orthogonal to the kern%llz)' An early version of the asymptotic theory, developed
of the adjoint operator t& defined in (5). This leads to the PY Keener [31] for scroll wave dynamics, considered the RFs

following system of equations for the drift velocities asymptotically periodic in the limjt — oo, in much the same
way as spiral waves are, thus requiring an artifical cut-adff p

' . . Lo cedure to tackle the divergence of the integrals in (12pfoil
® =€Fy(R,t), R=eFi(R,1). (11)  ing from such an asumption.
) . ., ) Based on observations and empirical data of spiral wave
Thus, the drift velocities> and iz are determined by the  gynamics, Biktashev [14, 32] conjectured that the response
“forces” Fy andF; = (Re (Fy),Im (Fy))" which, after slid-  functions quickly decay at largg, i.e. are effectively local-
ing averaging (more specifically, central moving averagejo ized. This conjecture implies that the integrals in (12)-con
the spiral wave rotation period, can be expressed [15] as  verge and no cut-off procedure is required.

the drifting spiral wave solution can be represented as

whereeg(7,t) is a small perturbation of the steady spiral
wave solutionU.

Then, the solution perturbati@nin the laboratory frame of
reference will satisfy the linearized system

The solvalability condition for equation (10) fer, i.e. Fred-

o w To prove existence of the localized responce functions, Bik
P (ﬁ 1) = ein® ]{ ﬂe—inm tasheveet al. [33] explicitly computed them in the complex
S T or Ginzburg-Landau equation (CGLE) for a particular set of pa-
t—7/w rameters. Those computations exploited an additional sym-

(n) . B . B B ., metry present in the CGLE, which permitted the reduction of
* <W (p(r R),0(F = ) + wr (I)) » (T T)> ’ the 2D problem to the computation of 1D components. The
n=0,=%1. (12) computations were verified by numerical convergence of the
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method with respect to the space discretisation and the siz&,Ny + 1 grid points and correspondingly = ¢(N,Ng+1)
of the medium. Following this work, the computed RFs wereunknowns and the same number of equations in the discretiza-
successfully used for quantitative prediction of the djsiras-  tion of (3). For the inner pointg < N,, the p-derivatives
onant drift and drift due to media inhomogeneity [34, 35]. By are calculated via second-order central differences. 6Fhe
explicitly computing the RFs in the CGLE for a broad rangederivatives are calculated using Fornberges ght s. f sub-
of the model's parameters, Biktasheva and Biktashev [3p, 37routine [42] which uses alNy values so, in theory, provides
showed that the RFs are localized for stable spiral wave soluan approximation of-derivatives of the order a¥y. The dis-
tions and qualitatively change at crossing the charaditeri cretization of the Laplacian at the center point is via thtedi
lines in the model parameter plane. ence between the average around the innermost girele\ p

Recently, there has been a significant theoretical progressd the center point, and the approximatiorj at N, takes
in mathematical treatment of the localization of the reggon into account the boundary conditionsat pmax.
functions. Sandstede and Scheel [38, Corollary 4.6] aRalyt The discretized nonlinear steady-state spiral problem (3)
cally proved such localization for one-dimensional wave di is solved by Newton’s method, starting from initial approx-
locations, which may be considered as analogues of a spiréhations obtained by interpolation of results of simulag@f
wave in one spatial dimension. Hopefully this can be extdndethe time-dependent problem (1) using EZSPIRAL. The New-
to two spatial dimensions.e. to spiral waves. ton iterations involve inversion of the linearized matrikiah

For cardiac applications, dynamics of spiral wavesin  has a banded structure with the bandwitlth 2¢Ny. This is
citablemedia is more important than ascillatory media such ~ achieved by the appropriate ordering of the unknowns of the
as the CGLE, as most cardiac tissues are excitable. Theskscretized problem within thé&/'-dimensional vector of un-
models do not allow reduction to 1D, making quantitatively knowns, so that the index enumerating components of reagent
accurate computation of the response functions more chalectors fromR* varied fastest, followed by the index enumer-
lenging. So far, the response functions have been computeding angular grid pointsA¢, followed by the index enumer-
in the Barkley [39, 40] and FitzHugh-Nagumo [41] models ating the radial grid pointgAp.
of excitable media. For the chosen sets of model parameters, The thus posed discretized nonlinear problem inherits the
the computed RFs appeared effectively localized in thewvici symmetry of (3) with respect to rotations. To select a
ity of the spiral wave core. Hamm [39] and Biktashesta unique solution out of a family of solutions generated by
al. [41] calculated RFs on Cartesian grids, but the accuracthis symmetry, we impose a “pinning condition” of the form
was not sufficient for quantitative prediction of drift. Hak Uy, (7. Ap, k. A8) = u., wherel,, u, andj, may be selected
and Henry [40] took the advantage of a polar grid and Barkleyarbitrarily andk.. is chosen as thgrid pointin thep = j. Ap
model to compute the spiral wave solution with an accuracyircle that gives the,.-component value closest to. in the
of 10~® and RFs with accuracy0—% (both in the sense of initial approximation. Sincé/,, (j.Ap, k.A0) is fixed, it is
l,-norm of the residue of the discretized equations) leading tno longer an unknown, and its place in tR& -vector of un-
guantitative prediction of drift velocities with about 4%cai-  knowns is taken bw, also to be found from (3). In this way,
racy. the balance of the unknowns and equations is preserved. As

Encouraging as these results are, there is a need for a moreis present in all equations, the corresponding non-zero col
computationally efficient, accurate and robust method to-co umn of the linearization matrix destroys the bandednedseof t
pute the response functions of spiral waves in a variety of exmatrix. This obstacle is overcome by employing the Sherman-
citable media with required accuracy. The aim of this papeMorrison formula [43] to find solutions of the corresponding
is to present a method which is superior to previous methodénear systems using only banded matrices. Newton itaratio
used to compute response functions and to demonstraté thagire performed until the residual in solution of the disaredi
works for stationary rotating spirals in FitzHugh-Nagurgs-s  version of equation (3) becomes sufficiently small.
tem. We also demonstrate convergence of the method with re- The linearized problems (4) and (13) are considered in the
spect to the computational parametess discretization steps  same domain with similar boundary conditions. The critical
and size of the medium, and show that the method is vastigigenvalues and eigenvectors of the discretized oper#tors
more efficient than the methods used before [40, 41]. and £* are computed with the help of a complex shift and

Cayley transform.
For a matrixL, be it discretization of. or £, the complex
Il. METHODS shift is defined as

A =L+ixl

and the subsequent Cayley transform as

A. Computations

To compute the response functions, we use methods similar B = (¢I+ A)*l (nI+ A) (17)
to those described in [16, 21].

The nonlinear problem (3) is considered on a disk<
Pmax, With homogeneous Neumann boundary conditions
0,U(pmax,0) = 0. The fields are discretized on a regular
polar grid(p;,0x) = (jAp, kA8) where0 < j < N, and
0 < k < Ny plus the center point = 0. Hence there are

wherex, £ andn are real parameters aids the identity ma-
trix. If A, « andg are eigenvalues di, A andB, respectively,
this implies

n+
+a’

o

a = \+ik, b=

o
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The selected eigenvalues and eigenvectors of the thus con-The accuracy of the “numerical” Goldstone modes is quan-
structed matrice® are then found by the Arnoldi method, tified by the distance between the “numerical” and “analyti-

using ARPACK [44]. cal” Goldstone modes, ih; norm

We have used = 0, » = 1 andx = 0, Fw when seeking,
respectively,V -+ and W(O-F1) | wherew is the solution ) 1/2
of the corresponding nonlinear problem previously obtaine D; = / ‘\”f(j) (@) — VO &3F
With this choice of¢, n andx, the numerical eigenvalues

. e : S
andj: closest to the theoretical critical eigenvalues (6) andl (14

correspondingly, generate the largggt Hence, the Arnoldi  as well as’, norm

method in each case is required to obtain the eigenvalue with

the largest absolute value. D, = maX‘V(J)( 7) — VU (7)
To normalize the eigenvectors, we use the “analytical’ 7es

Goldstone modeV (%), obtained by numerical differentiation

of the numerical spiral wave solutidd, namely,

over a diskS of half the radius of the computational domain:

\V](O) — —aeﬂ(pﬁ), §= {F |7?| S pmax/2}‘

vED — _le:Fi@ (8, Fip~05) Ulp,9), The smaller disk is used to exclude the effects of boundary
2 conditions. The issue is that the exact Gfdo not satisfy
where differentiation has been implemented using the samdeumann boundary conditions wherééslo, hence there is
discretization schemes as used in calculations. an inevitable deviation between them nga& pax, which
First, the response functiof (*) computed by ARPACK  is an artefact of restricting our problem to a finite domaird a
are normalized with respect to the “analytical” Goldstoneis not indicative of the accuracy of the compuféd, which

modesV (%) so that are expected to be exponentially small nga# pax.
. . The accuracy of the computed response functhsould
<W(k) ; V(k)> =1, k=0,=+1, be tested directly in the same way as the accuracy of the com-

putedw, i.e. by the numerical convergence to some limit. This
where numerical integration involved{n, -) has been carried is however, difficult to implement for the numerical solurtso
out using the trapezoidal rule. obtained on different grids. Nevertheless, we are able 10 ex
Then, the “numerical” Goldstone mod®$*) computed by ~amine the convergenceikp where coarser grids are subgrids

ARPACK are normalized with respect to the normalized re-of the finer grids by restricting the fine-grid solutions te th
sponse functions so that coarse grid, without the need for any interpolation. Specifi

cally, we calculate
<W<k> , V<k>> —1,  k=0,+1.
1/2

A (s N 2
Thus, we finally obtain & = / ‘W(AJZ(F) G

e a numerical solution for the spiral wave problem (3) to-

gether with the angular velocity, and

e “analytical” Goldstone mode¥ (*)
P

&) = max| W7 - WE), (7

e normalized “numerical” Goldstone mod&&*), and

« normalized response functio’ . over the whole computational domain
B={r: | < pmax},
B. Analysis )
WhereWAj () are the numerical response functions calcu-
B;\ted at the radius stefyp which is an integer multiple of the

To validate the computed response functions, we have t inimal radius ste and the finest numerical response
demonstrate convergence of the solution with respect to the" ) AV p

numerical approximation parameters such as the size of tI"fé'nCt'OnSWAp () have been restricted to the coarser grid
mediumpn,ax, and the discretization stepsp andAd. of WY (7) of the solution to which they are compared, so
First of all, we have to demonstrate convergence of thehe numerical integration is done over the coarser grid.eNot
computed eigenvalues af, andji,, to their theoretical values that in the series with varying,.. and fixedA# andAp, the
(6) and (14), taking fow its numerical approximatiafi found  coarser grids are also subgrids of the finer grids, but as the
by numerical solving the discretized problem (3). Since thepinning point is defined viap,.x, solutions at differenp,,.x
“theoretical” value forw is not available, we can only check are again not directly comparable to each other so thissserie
convergence af to some limit. is not used in this comparison.



We also assess accuracy indirectly via the bi-orthoggnalit 1. RESULTS
between the response functions and the Goldstone modes re-
quired by (16). Specifically, we examine the orthogonalfty o A. General

the RFs to the “analytical” GMs, quantified by

A(n o 2 .
0, — Z Z ‘ W) V(’“)> B j,k‘ (18) We have tested our method for computing the response

R ] functions in the case of the FitzHugh-Nagumo mode¥, 2,
J=Y, =Y,

a_lnd orthogonality of the RFs to the “numerical” GMs quanti- fi = e Hur —ul/3 —u),
fied by fo = e(us —aug +b),
A s ~ 2
On=3 3 (WO, V) — 5]
§=0,4+1 k=0,+1 < > D = (1) 8 , with parameters, = 0.5, b = 0.68, ¢ = 0.3.

Note, that by construction the diagonal elements of both th&or pinning, we have usetd = 2, u, = 0.1 andj, = N,/2.

“‘numerical” and “analytical” bi-orthogonality matriceete  Newton iterations have been performed until the Euclidean
are all equal to 1 up to round-off errors. . ~ (I2) norm of the residual in the discretized nonlinear equa-
The measure§,, andO,, require some discussion. The bi- tion falls below10~%. For comparison, we have also run

orthogonality should be exact for exact RFs and GMs. How<cases, discussed later in fig. 5, in which iterations coetinu
ever, what we calculate are approximations of these funsfio until the norm of the residual no longer decreases (typicall
subject to discretization ip and¢ and restriction to a finite  such norms were below0— down to10~!3). The tolerance
domainp < pmax. The bi-orthogonality of numerical solu- in ARPACK'’s routinesznaupd andzneupd has been set
tions is therefore not exact and its deviation from the ideal to the default “machine epsilon”. For the Krylov subspace
an indication of the accuracy of calculation, and its conver dimensionality we have tried 3 and 10, with no perceptible
gence inAp, A6 andpn.x is an indication, albeit indirect, of  difference in either the numerical results.

the accuracy of the solutions. ~ Before discussing the performance of our numerical tech-
~In more detail, if the the matrices representing discretizaniques, we briefly present typical solutions. Figures 1 and 2
tion of £ and L* were transposes of one another, then theiljjlystrate the spiral wave solution and the GMs and RFs for
eigenvectors corresponding to different eigenvaluesavbel |, = — 25 N, = 1280 and Ny = 64. This solution is
exactly orthogonal iy, and so a measure of their orthog- taken as the best achievable given memory restrictions (4Gb
onality would not depend on the spatial discretization buiof real memory). The angular velocity for it was found to be
only on the accuracy of the calculation of the eigenvectgrs b, ~ 0.5819341748776017. For the GMs and RFs, we show
ARPACK. However,L andL™ are conjugate with respect to thep, = 0 andn = 1 modes only, since the calculated= —1

the scalar product which is approximated by a discrete innefodes are almost exactly the complex conjugates af thel
product with a weight, hence the matrices®fnd L™ are  modes, which of course they should be.

not transposed. Moreover, because of the approximatiah Use ne can see that the GM&are indeed proportional to cor-

for these operatorse@. hlgh-qrder apprOX|mat|0n_|m9 VS responding derivatives of the spiral wave solutidnand that
second-order approximation i), the corresponding matri- "o i 416 localized in a small region of the spiral tip and
ces are not adjoint of each other with respect to the Weighteg1 R d SP P

are indistinguishable from zero outside that region.

I, either. So0,0,, provides a measure of the consistency of ) . . L
these matrix representations together with the accuratty wi . The chara_ctgr c_)f the RFs’ decay with distance is illustrated
in more detail in fig. 3. We plot the angle-averaged values of

which the eigenvectors are computed with ARPACK. the solutions. defined as

Moreover, apart from the question of accuracy of finding ’
the eigenvectors of the discretized operators and accwfacy 1 .
finding the eigenfunctions of the original continuous opera (X)) (p) = 7 jéXi(n)(pﬁ) de,

. . . ™

tors, there remains a question of whether the found eigenvec
tors and eigenfunctions are the ones that we need, thatcorrgy, x — 7,V andW. Note the difference in the behavior
spond td) andiz‘w,_ rather than eigenfunctions correspondingOlc <U>(n) and<V>(”) on one hand an((iW)(.") on the other
to e|%envalueshwh|ch happer;}gd to be .ClOSQMdiZ% [kffg]'h hand. In the semilogarithmic (linear for horizontal axisg
Fort N GMS’t e answer to this question Is ensured by ¢ ed%{rithmic for vertical axis) coordinates of fig. 3(c) the dnap
ing the distanc®;; however, this answer is not absolute as the (n) .
comparison is made only over part of the disk, for reasons disOf (W)™ (p) are straight for a large range pfnot too qlose
cussed above. We note, however, that feeigenfunctions O(OI;pmm_c = 25, and for several decades of magnitude of
corresponding to the eigenvalues close to but differenfro (W);"- This shows clearly the expected exponential localiza-
0, +iw, are orthogonal to the GMs and for thedy would be tion of the RFs. For comparison, we also show convergence
not small [50]. Since®,, is defined in terms of scalar products of & = @(pmax) in a disk as a function of the disk radius
with the mode determined directly from the underlying dpira p,.x. Theory [36, 45—-47] predicts that th)l(.") (p) and
wave, its smallness provides the additional assurancéhtBat Aw(pmax) = @(pmax) — w(00) dependencies should both be
adjoint eigenfunctions are indeed the RFs that we are aftedecaying exponentials with the same characteristic exgpne
not just some adjoint eigenfunctions. this agrees well with the numerical results shown in fig. 3(c)
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FIG. 1: Solutions of the nonlinear problem (3) and the linest problem (4,5)i.e. the Goldstone modes, at the “best” parameters, = 25,
N, = 1280, Ny = 64, as density plots. Numbers under the density plots are dinglitudesA: white of the plot corresponds to the valde
and black corresponds to the valuel of the designated field. Upper row: 1st components, lower &twcomponents.

000

2.00299 0.0439188 0.72395 0.452911
0.903849 0.162824 2.70424 2.80215
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FIG. 2: Same visualization as in fig. 1, for the adjoint liriead problem (13,15),e. the response functions.
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FIG. 3: Radial dependence of the angle-averaged solutarthé spiral wave (a), Goldstone modes (b) and responséidusdc). In (c), the
dependence A\w(pmax) = @ (pmax) — @(25) is shown for comparison, whet& pmax) is the numerically found spiral angular velocity in
the disk of given radiugmax.

Sandstede and Scheel [19, 20] have computed exponentiather factors.

decay/increase rates of eigenfunctions of periodic wairr  The position of the “knees” on the curves indicates that
in one spatial dimension. A similar technique should, impri - the accuracy of the rotationak (= 0) modes would be im-
ciple, also work for the adjoint eigenfunctions. Knownihgt proved if A9 were further decreased (there are no knees on
asymptotic wavelength of the spiral wave, this can be used tghe curves corresponding to the rotational modes, red enlin
predict the exponential decay rates of the RFs of spiral &ave i the fourth,i.e. rightmost column), whereas the limiting pa-
As can be seen from the results of Wheeler and Barkley [21]sameter for the translationah(= 1) modes isAp (there
although such correspondence between 1D and 2D calculgre no knees on the curves corresponding to the tanslational
tions can be established, the accuracy of decay rate esmatygdes, blue online, in the third column). The analysis of
for two-dimensional eigenfunctions achieved in thiswanis  the first two columns is more complicated. The errors esti-
sgfficient fqr a meaningful estimate of the accuracy of thosenates at the maximahnax are similar in both columns as
eigenfunctions. they correspond to the same “best” spiral. These limit val-
ues are achievedge. plateaux are observed, at much smaller
Pmax Values ifAf = const, than if p,,, A0 = const. Thisis
B. Convergence because reduction @f,,. at fixedAf produces an additional
improvement of approximation due to the angular discretiza
éion. Whenp,,.x A6 is kept fixed, as in the first column, the
of the method has been tested by changing one of the thr pendenc_e of the solution on the disk radius is without this
numerical approximation parametexs,.., N, andNy while ~ &Xtra benefit.
keeping the other two at the fixed values set by the “best ex- The rates of convergence with respect to parameters can be
ample”. More specifically, while changing,.., we consider —assessed by the slopes of the curves above the knees before
two variants: one with fixedVy, and one with changingy/y they plateau. In some cases the data is somewhat irregular,
so that the combinatiop..< A, which is the size of the out- primarily at parameters corresponding to lower values of er
ermost computational cells in the angular direction, remmai ror estimates. This is not unexpected and we attribute it4o i
constant. complete convergence of the iterative procedures (sea/helo
Fig. 4 illustrates the results of the study, where the fourOn the whole, the slopes can be determined clearly from these
columns correspond to different series of calculationd,the  plots.
three rows correspond to the three different methods of as- The constant slope in the first (leftmost) and the second
sessing the accuracy: closeness of the eigenvalues tceive th columns corresponds to the exponential convergence with
retical values, distance between “numerical” and “aneffti  p,,... The constant slope in the third column corresponds to
GMs and orthogonality between non-dual RFs and GMs. Th@ower-law convergence, and the typical slope is 2. This is
scales ofAp, Af and the error estimates are logarithmic, andwell seen on the curves for translational modes, blue online
the scales op.,.x are linear. Here shown is the distance be-and not well on the curves for rotational modes, red online,
tween the “numerical” and “analytical” Goldstone modes inwhich are very small anyway. Slope 2 in the third column
Ly norm, the distance i’y norm looks similar. is to be expected as our discretization is second-ordéyzin
A typical feature on many of the curves is a “knee”-shapejn all cases. The curves in the fourth (rightmost) column are
when the measure of the error decreases,as grows orAf convex, which is consistent with the fact that the order of ap
or Ap decrease, but only until a certain point, beyond whichproximation isNg, which varies along the curve ag) varies,
it reaches a plateau. This behavior is expected and exjicab since Ny = 27/ A#, so the slope is bigger for small&d. In
The calculation error is affected by many factors, and if theother words, the high order of the Fornberg approximation of
factor varied in a particular series becomes negligiblnthe  thed derivatives implies the convergenceAd is faster than
error remains at a constant level determined by fixed valties any fixed power.

We now turn to the main results of our study. Convergenc
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The irregular shape of some of the curves in fig. 4 at veryl0—® for Newton iterations of the spiral wave and some of the
low values of the error estimates is related to the accurkcy ccurves fall as low ag0~'° i.e. close to machine epsilon. A
finding the spiral solution and is ulitmately affected by the change in the tolerance of the Newton iteration reduceg-irre
precision of floating point computations. Note that all cal- ularities in the curves at low values, as shown in fig. 5(a,b).
culations in fig. 4 have been performed with a tolerance of Finally, fig. 5(c) illustrates convergence of numerical RFs
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WO asAp — 0, calculated as thé..-distance&, ; be-  tionis the necessity to solve large systems of linear eqosti
tween the solutions at a given resultidtp and the “best” However, the key observation is that since the linear system
solution calculated at the smalle&p, = 25/1280. As ex- s fixed, it needs to be factorized only once, for a given com-
plained in the Sec. Il B, this comparsion has been restricteglex shift, and used for all iterations. Multiplication byam
to the series of calculations with varyingp, where grids at  trix B is achieved with only inexpensive back/forward solves.
lower resolutions were subgrids of those with higher resoluMoreover, due to the way we ordered the unknowns in the
tions. The graphs of', distances?, ; looked similar and are  discretized problem, the sparcity of matixdoes not depend
not shown here. on the order of approximation éfderivatives. Hence, we are
able to employ high-order approximations requiring fardéew
points in thed direction for the same accuracy as the second-
IV. DISCUSSION order finite difference discretization used in [40], therélo-
ther improving the efficiency of our method.
The main result of this paper is a general, robust method for Discounting the factorization step, each iteration, which
obtaining response functions for rigidly rotating spiralwgs  volves multiplication byB, is comparable to multiplications
in excitable media with required accuracy. by L. In practice we find that the factorization itself does
We have tested the method on the FitzHugh-Nagumo modelot require more than the equivalent of four to six actions of
and we have studied the convergence of spiral wave solutior8. On a MacPro with 3 GHz Intel processor, the factorization
and eigenfunctions, both the Goldstone modes and the retep takes.g. about 7.5 sec for the grit¥,, = 1280, Ny = 64,
sponse functions, with respect to the numerical approxanat and 0.67 sec for the gridi, = 640, Ny = 32; the compu-
parameterg.,.x, IV, and Ny. The rates of convergence are tation times peiB-multiplication were 1.23 sec and 0.17 sec
found to agree with the order of approximation and indicaterespectively.
the accuracy with which solutions can be found for particula The comparison of our present method with [41] is un-
numerical parameters. equivocal: matrix inverses were not used there, and it was
The slowest (second-order) convergence is, as expected, #imitted already in [41] that the resulting accuracy of solu
the parametelV,. Thus in a typical situation, an improvement tions was severely limited. While direct accuracy and tignin
of accuracy requires, other things being equal, an increbise comparisons with [40] would be most convincing, that code
N,, with associated increase in memory and time demandss not publicly available. However, for reasons alreadyedot
Thus, the most promising avenue of further development obn any given polar grid, the method we report is more accu-
the method is via increase of the approximation order of theate due to the angular discretization and considerabtgifas
radial derivatives. This is, of course, subject to usuakeav in floating-point operations.
that the degree of approximation should be consistentWwéht  The computed response functions are localized in the vicin-
actual smoothness of the solutions. ity of the spiral wave tip and exponentially decay with dis-
The method used here to solve the eigenvalue problems feance from it. This localization ensures convergence of the
operatorsL relies on successive application of transforma-convolution integral in (12) in an unbounded domain.
tions of L applied to a sequence of vectors, alternating with  The eigenvectors of the linearized operata, Goldstone
Gram-Schmidt orthogonalization. These are typical ideasmodes and of its adjoini.e. the response functions have been
also used in [40, 41]. The difference is thatin [40, 41], the|  computed using the same technique, so the qualitatively dif
ear transformations were polynomial functionslofvhereas  ferent behavior of these solutions at laygis not a numerical

we use rational functions df. The polynomial iterations used artefact, as it was not in any way assumed in the numerical
in [40, 41] were in fact equivalent to solving a Cauchy prob-method.

lem for equationiu/d¢ = Lu by the explicit Euler method. Although the method has been used here to compute the re-
Therefore, those methods require a large number of itersitio ¢ronse functions in the FitzHugh-Nagumo model, none of the
and convergence speed of the iterations depends on the smafails of the method depends on any specifics of the partic-
ness of the absolute difference of the real parts of the eigen,jar reaction kinetics and should be widely applicable ® th
values of interest compared to those of other eigenvalues. O computation of response functions of rigidly rotating waire
requires at _Iegs(D(105) and typically@(lo‘f) sparse matrix- gy other model of excitable tissue, as long as its righghan
vector multiplications to achieve the desired solutionth®  gjjes are continuously differentiable so the linarizedtiés
eigenvalue problem using such an approach. applicable. Moreover, the method can also be extended in a
In contrast, with the complex shift and inversionlotised  gyraightforward way to include additional effects, suchrees

in this paper, the convergence speed of the iterations dspengifect of uniform twist along scroll waves with linear filants
on the smallness of the distance of the eigenvalues from thej, three dimensions [17, 40, 48].

theoretical values used in the complex shift, compareddo th

distance to other eigenvalues. Hence the number of iteistio

required is very small, typicallyD(10). More specifically,

with Krylov subspace dimensionality 3, the number of ma- Acknowledgement

trix multiplications with matrixB of (17) did not exceed 7
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