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Abstract

Dynamics of spiral waves in perturbed two-dimensional autowave me-
dia can be described asymptotically in terms of Aristotelean dynamics.
We apply this general theory to the spiral waves in the Complex Ginzburg-
Landau equation (CGLE). The RFs are found numerically. In this work,
we study the dependence of RFs on parameters of the CGLE.

1 Introduction

Spiral waves are a specific form of self-organisation first discovered in the Belousov-
Zhabotinsky reaction medium [1] and observed in various physical, chemical and
biological systems; of the most practical importance is the cardiac muscle, where
spiral waves underlie dangerous arrhythmias including fibrillation [2]. Usually
they are studied using “reaction+diffusion” systems of partial differential equa-
tions,

du = f(u) + DV?u +eh(u,z,t), u,f €RE, D e R £>2. (1)

In unperturbed media, at € = 0, we assume that a solution in the form of a
steadily rotating wave exists:

u=U(r,t) = U (p(r),Hr) + wt). (2)

This rotating wave will be a spiral wave, if U(p, ¢) = ﬁ(p/A —¢/27) as p — 00,
for a U(£) : mod (1), U # const. Then equiphase lines at large p are close to
Archimedean spirals with pitch A.

If a spiral wave solution (2) exists, then

@=U(p(r—R),%r—R)+0), (3)



where @ = wt — ®, is another solution for any constant R, ®. This is a spiral
wave shifted in space by R and rotated by @, or, equivalently, shifted in time by
®/w. Thus, the unperturbed reaction-diffusion system has a three-dimensional
manifold of spiral wave solutions, parametrised by two-dimensional vector R
and phase ©. The physical observability implies that this manifold is reasonably
stable as a whole.

A perturbation eh # 0 could be a slight inhomogeneity of the medium or
explicit time-dependent external forcing. The typical effects of the perturbation
on the stable invariant manifold of spiral waves are (i) displacement of the
manifold, (ii) perturbed dynamics along this manifold. The latter is a slow
change of previously constant parameters R and &, i.e. spatial and temporal
drift of the spiral wave (the temporal drift is the shift of the rotation frequency),

at(") =w + EF()(R, @), (9tR = EFl(R, @) (4)

The velocities Fp, F1 of these drifts, in the first approximation, are linear
functionals of the perturbation. Both Fy and Fy = Fy, + iFy,, after sliding
averaging over the spiral wave rotation period, can be expressed as

t+m/w
Fo(t) = e® 7{ u;—(j:— // d%r e7 T (W, (p(r — R),9(r = R) + wr — @) , h),
t—m/w R?
(5)
where
h=h{U (p(r —R),%r - R) +wr — ®),r,7), R =R((t), &=2(¢),
(6)
and W,,, n = 0, £1 are the critical eigenfunctions,
LYW, = —iwnW,,, n=0,%1, (7)
of the adjoint linearised operator
T
LY = DV? 4 wdy + (ﬁ) ; (8)
ou
u=U(r)
chosen to be biorthogonal to the Goldstone modes,
Vo = —09U(p(r),d(r))li=o,
1 - .
Vi = e (3, Fip00) Ulplx), 9(r))lico- (9)
which are the critical eigenfunctions of the linearised operator,
L =DV? —wdy + (6—f) ) (10)
o) | y—vr)

We call Wy 1 the response functions (RFs). These functions, in the context
of autowave vortices, were first introduced to describe the dynamics of twisted
and bent three-dimensional scroll waves [3, 4], and then used to describe the



dynamics of the two-dimensional spiral waves in perturbed media [5]. Like the
spiral wave solution themselves, the RFs can be found numerically. If neither the
perturbation nor the RFs are localised in space, then the convolution integrals
(5) may diverge. It was hypothesised in [4, 5] that typically in spiral waves, the
RF's are essentially localised, i.e. quickly decay with the distance from the spiral
rotation centre. The RFs were found and this hypothesis has been confirmed for
a particular autowave model, the Complex Ginzburg-Landau equation (CGLE),
at a particular choice of parameters, in [6]. Based on that result, the predictive
ability of the theory has been tested in [7].

In this paper, we study the behaviour of the RFs in a broad region of the
parametric space of CGLE. The considered region of the parameters was limited
by the existence and stability of the spiral wave solutions. The conclusion is
that in all the explored region, the localisation of the RFs persists.

2 Results

Perturbed Complex Ginzburg Landau Equation (CGLE) is a two-component
reaction-diffusion system which is conveniently presented in the complex form:

du=u—(1—-Za)ulu]>+ (1 +ZB)V?u +ch (11)

where u € C, o, 8 € R. The imaginary unit 7 in this equation must be treated
as a different mathematical entity from i of the general theory; i.e. we are
working with an algebra of “bicomplex numbers”, see [6] for details.

The steadily rotating spiral wave solutions to this equation have been studied
by Hagan [8], and have the form

Ulr,t) = "D P(p) (12)
where P(p) = a(p)e?¥®) € C and w solve a nonlinear eigenvalue problem
1 1
(1+16) (P" +oP - p—gp) +(1-Tw—(1-Ta)|PP) P =0,

Plp—=0)xp, P(p— o0)~vV1—Ek2exp(Zkp+ o(p))(1+ 0(1)),(13)

where k = k(a, 3) is the asymptotical wavenumber, changing sign at a + 3 = 0,
and w = a — ak? — Bk%. The response functions have the form [6]:

W, = e=m2Q,(p) (14)

where @),,, n = 0,1 are solutions to linear problems

(1—Iﬂ){Q;ﬁ+ %QHMQH}

p
+ {1+ Zw-a’ 21+ Za) + (1 - Ta)e**?C] } Qn =0,
|Qn(p = 0)] <00, Qn(p—>00) 0. (15)

Here C is the operator of Z-conjugation; W; and @); are bicomplex-valued func-
tions, each having four components.

We have studied numerically the behaviour of the solutions to the prob-
lem (13),(15) on the parameters a and . We used the numerical procedure



described in [6], typically on the interval p € [0 : 50] with discretisation step
Ap = 0.07. The parametric portrait of the CGLE is central symmetric in the
(a, B) plane, so we consider only a > 0 without loss of generality. The existence
of localised RF's was considered established if the absolute values of the artificial
eigenvalues (see [6]) were less than 1073.

The explored regions is shown in Fig. 1. The points at this figure mark
the values of a and 8 at which the computations have been done and existence
of localised RFs ensured. Solutions, corresponding to the selected points, are
presented on subsequent figures. Point (0.5,0) was illustrated in [6, 7].
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Figure 1: The explored region of (a, 3) plane.

The expected decrease of @, at p — oo implies that
Qn(p) x €, (16)
where A is a root of the characteristic equation
Nirpl+g=0 (17)
with Re(\) < 0, typically the one with the least |Re())|. Here

(a+B)(1—F?)
1+

af—1+k?* (3+26% —apf)

=2
p ].+/62 ?

q = —4k

The problem for the RFs is properly posed, in the sense used in [6], if (17) has
one positive root and two roots with negative real parts. This is fulfilled as long
as |k(a, B)| < 1, except on the line @ + 8 = 0, when one of the roots vanishes.
The sign of k changes when crossing the line @+ 8 = 0. This is why the winding
of the spiral at Fig. 2 is opposite to that on the other four figures. Near a+8 =0,
the asymptotic wavelength grows to infinity, and at intermediate p, the spiral
is logarithmic rather than Archimedean [8]. This is indeed seen on Fig. 3. It
can be seen that the critical root A of the characteristic equation (17) becomes
very small in this limit, A o« —(a + )k, where k, in turn, is exponentially small
in (a + B) [8]. This makes the computations of the spiral waves and the RFs
in the vicinity of this line more difficult. At this line, the CGLE becomes a
quasi-gradient system, hence L1 ~ L, and so near it we may expect the RFs



W, to become similar to the Goldstone modes V,,. In this limit, in the region
1 € p € k™! the amplitude of V; remains approximately constant as well as
that of U, while V; decays as p~!. This is consistent with the behaviour of W,
seen on Fig. 3.
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Figure 2: The spiral wave (U), temporal RF (Wy) and the i-real and i-imaginary
components of the spatial RF (W;), as density plots. Shown are the Z-real
components of all four functions; the Z-imaginary components are the same
functions rotated by /2. Spatial region displayed on this and subsequent figures
is (z,y) € [—20,20] x [—20, 20], with resolution 91 x 91 pixels. The homogeneous
shades of grey on the peripheries of Wy ; correspond to zero, ¢.e. all the RFs are
essentially localised near the rotation center. This is the solution for a = 0.1,
B8 =-0.9.
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Figure 3: Solution for a = 0.1, 8 = 0.1.

The character of the decrease the RF's at large p will be qualitatively different
depending on the two negative roots of the characteristic equation (17). If they
are both real, the decrease will be monotonic. If they are complex, the decrease
will be oscillatory. On the (a,3) plane this cases are separated by the line
D = (p/3)® + (¢/2)® = 0, also shown on Fig. 1. Fig. 4 illustrates what is
happening in the region with oscillatory decrease. The behaviour of the RFs
has changed qualitatively. Whereas the localisation of the RFs in Fig. 2 was
almost entirely within the very tip of the spiral, RFs in Fig. 4 extend over
the first winding. Another new feature is the ‘halo’, i.e. region around the
innermost core, where the RFs have the opposite sign.

The next special line in (a, 8)-plane is the line of the Eckhaus instability,
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Figure 4: Solution for a = 0.5, 8 = 0.5.

defined by equation p = 0. Beyond this line, the plane waves emitted by the
spiral, are exponentially unstable with respect to longitudinal modulation. This
implies that in this region, spiral wave solution should technically be unstable
if considered on the whole plane. However, as it can be seen on Fig. 5, the
localised RFs continue to exist even in that region, although their spatial extent
grows further. Compare this observation with the sustained phenomenological
stability of spiral waves beyond the Eckhaus limit, which was explained by the
convective character of the Eckhaus instability [9].
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Figure 5: Solution for a =1, 8 = 1.

3 Conclusions

The obtained results suggest that the localisation of the response functions is
a universal property of the spiral waves in the CGLE, at least in the region
studied. This localisation only weakens near the line where the asymptotical
wavelength grows, and beyond the Eckhaus limit, near the region of the absolute
instability and turbulence. This evidence, by no means conclusive but encour-
aging, supports the viewpoint that the response functions remain localised as
long as spiral wave solutions remain to exist and to be stable.

Changes in the behaviour of the spiral waves correlate with the change in
the shape of the RFs. Approaching special regions in the (a, ) plane, such
as the absolutely unstable region or the quasi-gradient line, is accompanied by
characteristic changes in the shape of the RFs.



The RFs may be used to predict new qualitative features in the behaviour
of the spiral waves. For example, the ‘halo’ around the central region of the
RFs, in the Eckhaus unstable region, may mean a special behaviour of spiral
waves with these parameters in the vicinity of a localised inhomogeneity, e.g.
entrapment. This is a subject for further study.
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