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I. INTRODUCTION

Spiral waves are a type of self-organization observed in
a large variety of spatially extended, thermodynamically
non-equilibrium systems of physical, chemical and biolog-
ical nature [1–19], where wave propagation is supported
by a source of energy stored in the medium. If the system
can be considered spatially uniform and isotropic and
its properties do not depend on time, the corresponding
mathematical models possess corresponding symmetries.
For many practical applications, a considerable interest is
in non-stationary dynamics of spiral waves, which is usu-
ally defined separately either as drift, which is displace-
ment of the average position of the core of the spiral with
time due to external symmetry-breaking perturbations,
or meandering, which is spontaneous symmetry break-
ing due to internal instability rather than external forces
and which is manifested by complicated movement of the
spiral with the average position of the core typically un-
moved.

The numerical simulation of drift and meander of spi-
ral waves, particularly when models are complicated and
high accuracy is required, can be challenging. There are
some theoretical considerations which suggest some way
of dealing with this challenge. So it has been observed
that as far as drift is concerned, spiral waves behave like
particle-like objects, which results from effective localiza-
tion of the critical eigenfunctions of the adjoint linearized
operator [20–24], so it should be sufficient to do the com-
putations only around the core of the spiral to predict
its drift. On the other hand, in the absence of external
symmetry breaking perturbations, meandering of spirals
can be understood by explicitly referring to the Euclidean
symmetry of the unperturbed problem [25–30]. Specifi-
cally, an idea of dynamics in the space of symmetry group
orbits [31], when applied to a reaction-diffusion system
of equations and the Euclidean symmetry group, leads to
a description which is formally equivalent to considering
the solution in a moving frame of reference (FoR) such
that the spiral wave maintains a certain position and ori-
entation in this frame [29]. We shall call it comoving FoR

for short.
The purpose of this article is to present a computa-

tional approach based on these considerations. We cal-
culate the dynamics of the spiral wave in a comoving FoR;
as a result, the core of the spiral never approaches the
boundaries of the computation box, which allows compu-
tations of drift and meandering of large spatial extent us-
ing small numerical grids. A simple software implementa-
tion of this approach, which is based on the popular spi-
ral wave simulator ‘EZ-SPIRAL’ [32, 33], and which we
called ’EZRide’, is provided on the authors’ website [34].
Our approach can be compared to the approach pro-

posed by Beyn and Thummler [35] and further developed
by Hermann and Gottwald [36]. Their approach also ex-
ploits symmetry group orbits, but is different in some
essential details. We shall discuss the similarities and
differences when we will have introduced our method.
The structure of the paper is as follows. In section II we

lay out mathematical basics of the approach and briefly
compare it with [35]. In section III we describe the nu-
merical method itself. In section IV we illustrate the work
of the method by simple and quick examples. The poten-
tial for numerical accuracy is demonstrated in section V.
The subsequent three section are dedicated to examples
of applications of the methods to problems where the
conventional methods would be struggling: section VI
for the degenerate case of meandering which results in
“spontaneous drift” of spirals; section VII for the dy-
namics near to, and beyond, the parametric boundary
at which the core radius of the spiral becomes infinite;
and section VIII for drift caused by a symmetry break-
ing perturbation. We conclude with a brief discussion of
the results in section IX.

II. SYMMETRY GROUP REDUCTION

Following [29], we start from a perturbed reaction-
diffusion system of equations in a plane,

∂u

∂t
= D∇2

u+ f(u) + h(u,∇u, ~r, t), (1)



2

where u =
(

u(1), . . . , u(n)
)⊤

= u(~r, t) ∈ R
n is a column-

vector of reagent concentrations varying in space and
time, f = f(u) is a column-vector of reaction rates,
D ∈ R

n×n is the matrix of diffusion coefficients, h ∈ R
n

represents symmetry-breaking perturbations, ||h|| ≪ 1,
n ≥ 2, and ~r = (x, y) ∈ R

2. If h = 0, then equation (1)
is equivariant with respect to Euclidean transformations
of the spatial coordinates ~r.
The following technical discussion is necessary to place

our method in the context of other works in the field.
Readers not interested in technical details may skip down
to system (16).
The idea of the symmetry group reduction is conve-

nient to describe if we view (1) as an ordinary differential
equation in a suitably chosen functional space B,

dU

dt
= F(U) +H(U, t) (2)

whereU : R → B represents the dynamic field u, F : B →
B represents the unperturbed right-hand side D∇2

u+ f ,
and H : B × R → B represents the perturbation h.
Let us suppose that equation (2) at h = 0 is equivari-

ant with respect to a representation T of a Lie group G
in B. This means that for any g ∈ G and any U ∈ B, we
have

F(T(g)U) = T(g)F(U). (3)

In our case, G = SE(2), the special Euclidean transfor-
mations of the plane R

2 → R
2 (including translations

and rotations), and T is its representation in the space
of functions u(~r) defined on this plane, acting as

T(g)u(~r) = u(g−1~r). (4)

We consider a subset B0 ⊂ B such that G acts freely on
B0, i.e. for aU ∈ B0, any nontrivial transformation g ∈ G
changes U, in other words, T(g)U = U ⇒ g = id. In
the terminology of [31], B0 is the principal stratum of B,
corresponding to the trivial isotropy subgroups. In our
case, this means that the graph of the function u(~r) ∈
B0 is devoid of any rotational or translational symmetry,
which is of course true for functions describing single-
armed spiral waves.
It is straightforward that at H = 0, the set B0 is an

invariant set of (2). Moreover, we shall restrict our con-
sideration to such perturbations H(t) that resulting so-
lutions U(t) remain in B0 for all t. This means, that the
perturbations are supposed to be so small they cannot
impose incidental symmetry on the otherwise unsymmet-
ric spiral wave solutions.
A group orbit of a given U is defined as the set

T(G)U = {T(g)U | g ∈ G}. That is, it is a set of all such
functions u(~r) that can be obtained from one another
by applying an appropriate Euclidean transformation to
~r. A group orbit is a manifold in B0, of a dimensionality
equal to d = dimG less the dimensionality of the isotropy
group. In our case, dimSE(2) = 3, the isotropy group is

trivial and the orbits are smooth three-dimensional man-
ifolds.
From the definition of the set B0 it follows that this

set is foliated by group orbits. The principal assumption
for the following analysis is that there exists an open
subset S ⊂ B0, also invariant with respect to G, in which
the foliation has a global transversal section, i.e. we can
select one representative from each orbit in S, such that
all such representatives form a smooth manifold M ⊂ S,
which is everywhere transversal to the group orbits. We
call this manifold a Representative Manifold (RM). That
would mean that any orbit in S crosses M transversally
and exactly once. Hence

∀U ∈ S, ∃′ (g,V) ∈ G ×M : U = T(g)V. (5)

The RM has co-dimensionality equal to the dimensional-
ity of the group orbits, i.e. in our case codimM = d = 3.
It is assumed to be smooth and we expect that it can
locally be described by equations µℓ(V) = 0, ℓ = 1, . . . d,
where functions µℓ : B → R, i.e. are functionals when in-
terpreted in terms of the original reaction-diffusion equa-
tion (1).
A convenient pictorial interpretation for our case is in

terms of spiral wave solutions and their tips. Suppose the
conditions µ1(V) = 0, µ2(V) = 0 determine that the tip
of the spiral wave is located at the origin, and condition
µ3(V) = 0 fixes its orientation, so M consists of such
functions that look like spiral wavesV which have the tip
exactly at the origin and in a standard orientation. Then
equation (5) states that any spiral wave solution u(~r),
considered at a fixed moment of time, can be transformed
by a Euclidean transformation, in a unique way, to a
solution v(~r) which has its tip at the origin and in the
standard orientation. This is equivalent to saying that
v(~r) is the same as u(~r) only considered in a different
system of coordinates, with the origin at the tip of u(~r)
and oriented accordingly to the orientation of that tip.
We shall say this is the system of coordinates attached to

the tip. An example of µℓ, as used e.g. in [29], is

µ1[v(~r)] = v(l1)(~0)− u∗, (6a)

µ2[v(~r)] = v(l2)(~0)− v∗, (6b)

µ3[v(~r)] = ∂xv
(l3)(~0), (6c)

where {l1, l2, l3} ⊂ {1, . . . , n} are suitably chosen com-
ponents, and l1 6= l2. This means that the tip of u(~r)
is defined as the point of intersection of isolines of the
components l1 and l2 of the field u at appropriately cho-
sen levels u∗ and v∗ respectively, and the orientation of
the attached coordinate system is such that gradient of
component l3 (which may or may not coincide with l1 or
l2) is along the y-axis in that system. This choice of µℓ

is of course not prescriptive, and later in this paper we
shall consider some variations.
Regardless of the exact definition of the tip, i.e. choice

of functionals µℓ, an essential assumption that we have to
make is that our spiral waves have one tip only, otherwise
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FIG. 1: (Color online) Sketch of skew-product decomposi-
tion of an equivariant flow using a Representative Manifold
M, which has exactly one transversal intersection with evey
group orbit g ∈ G within the relevant stratum of the phase
space B and is diffeomorphic to the orbit manifold. Trajectory
(U,U′,U′′) of an equivariant flow in B is a relative periodic
orbit, since it projects onto the trajectory (V,V′,V′′ = V)
onM which is periodic. The flow onM is devoid of symmetry
G.

there would be more than one way to transform them to
the standard position or to chose the attached system of
coordinates. Hence the reason for a further constraint to
the subset S ⊂ B0, which we now can define as consisting
of such one-tip spiral wave solutions, or functions that
look like it: without such constraint, the whole set B0

includes solutions with no tips or more than one tip, for
which the decomposition (5) would not hold. As before,
we assume that set S is invariant with respect to the
dynamic equation (2) for not too big ||H||, that is, if
U(0) ∈ S, then U(t) ∈ S for all t > 0 and ||H|| < Hmax.
A further restriction is on the manifold M. It is easy

to see that equations like (6) may not be sufficient to
define the manifold with the required property that any
orbit crosses it only once. For instance, if v(~r) satisfies
(6), then v(−~r) also satisfies it, so a rotation by 180◦

around the origin transfers a point on S to another point
on S. So to make the representation (5) unique, rather
than just requiring that the gradient of the l3-component
of v(~r) is along the y axis, one would need to specify in
which direction it is, say add to the definition of M by
the equations µ1,2,3[v] = 0 a further inequality

µ4[v] > 0, where µ4[v(~r)] = ∂yv
(l3). (6d)

This comment extends to the variations of (6) which we
consider later.
By performing the decomposition (5) for every t ≥ 0,

we decompose motion in S to motion along the RM and
motion along group orbits which are transversal to the
RM (see illustration in fig. 1).
So for all t ≥ 0, we have

U(t) = T(g)V(t) (7)

Substituting (7) into (2) and applying T
(

g−1
)

to both

sides, we get

T(g−1)
dT(g)

dt
V +

∂V

∂t
= F(V) + H̃(V, g, t) (8)

where

H̃(V, g, t) = T(g−1)H(T(g)V, t) (9)

We note that if H = 0, the right-hand side of (8) is
independent of g.
By the assumptions made, intersection of the group

orbit T(G)V with the manifold M at the point V is
transversal. This means that the vectors F(V) and

H̃(V, g, t) can be uniquely decomposed into the sums of
the components along the group and along the manifold,

F(V) = FG(V) + FM(V), (10a)

H̃(V, g, t) = HG(V, t) +HM(V, t). (10b)

Hence equation (8) splits into two components, along
the RM and along the group orbit (GO):

(RM)
∂V

∂t
= FM(V) +HM(V, t) (11a)

(GO) T(g−1)
dT(g)

dt
V = FG(V) +HG(V, t) (11b)

Note that equation (11a) is the equation on the infinite-
dimensional manifold M, i.e. corresponds to a partial
differential equation, whereas the left- and right-hand
sides of the equation (11b) are in the tangent space to the
finite-dimensional group orbits, and the dynamic variable
g is an element of the finite-dimensional manifold G, so
(11b) is in fact a system of ordinary differential equations
of order d = dim G.
At this point we comment on what we see as a signifi-

cant difference between our approach and that proposed
by Beyn and Thummler [35] (BT). Using our notation, in
place of our “pinning” conditions µℓ(V) = 0, ℓ = 1, . . . d,
they defined “phase conditions” of the form µℓ(V, g) = 0
(see equation (2.22) in [35]), subsequently further gen-
eralized to µℓ(V, g, dg/dt) = 0 (ibid., equation (2.33)).
This means that their decomposition U = T(g)V is not
uniquely determined by the current state U, but depends
on history. Such generalization may have its advantages
and, apparently, works well for relative equilibria, i.e.
steadily rotating spirals [35, 36]. However, the situation
is different if the solution is a meandering spiral, i.e. is
periodic with period P in the orbit space (as illustrated
in fig. 1). This means that U(t + P ) is equivalent to
U(t) up to some Euclidean transformation. In our ap-
proach, it is then guaranteed, that V(t + P ) = V(t),
as by (5), µℓ(T(g

−1)U) = 0 has a unique solution for g
at a given U. However, in the BT approach, typically
V(t + P ) 6= V(t), since µℓ(T(g

−1)U, g, dg/dt) = 0 does
not uniquely define g, as dg/dt is not fixed. So in our
approach, study of meandering spirals reduces to study



4

of periodic solutions for V(t), but it does not do so in
the BT approach.
A practical approach to the problem of decomposing

the vector fields as in (10) is as follows. Equations (11)
together with the definition of the RM via functionals µℓ

can be re-written in an equivalent form

∂V

∂t
= F+ H̃+A, (12a)

µℓ(V(t)) = 0, ℓ = 1, . . . , d, (12b)

T(g−1)
dT(g)

dt
V = −A, (12c)

where A = A(V, t) = −FG(V) − HG(V, t) is a vector
belonging to the three-dimensional tangent space of the
group orbit T(G)(V) at V. In this formulation, at any
given moment of time, equations (12a) and (12b) to-
gether define the evolution of V and the current value
of the vector A, whereas equation (12c) defines the evo-
lution of g.
By definition, vector A is a result of action of a linear

combination of the generators of the Lie group T(G) as
linear operators on V. To write the explicit expression
for the general form A for our case, let us introduce co-

ordinates (~R,Θ) on G = SE(2), where ~R = (X,Y ) is the
translation vector, Θ is the rotation angle and a group
element acts as

g = (~R,Θ) : ~r 7→ ~R + eγ̂Θ~r, (13)

where γ̂ =

[

0 −1
1 0

]

, so exp(γ̂Θ) is the matrix of rotation

by angle Θ.
Using this representation, differentiating the definition

of T(g)v given by (4), and substituting the result into
(12c), we get

A = ω∂θv + (~c · ∇)v, (14)

where

ω = Θ̇, ~c = e−γ̂Θ ~̇R, (15)

and θ is the polar angle in the (x, y) plane, so ∂θ =
x∂y − y∂x.
With this result, the system (12) in the original PDE

notation states

∂v

∂t
= D∇2

v + f(v) + h

(

v, eγ̂Θ∇v, ~R + eγ̂Θ~r, t
)

+ (~c · ∇)v + ω
∂v

∂θ
, (16a)

v(l1)(~0, t) = u∗, v(l2)(~0, t) = v∗, (16b)

∂v(l3)(~0, t)

∂x
= 0,

∂v(l3)(~0, t)

∂y
> 0, (16c)

dΘ

dt
= ω,

d~R

dt
= eγ̂Θ~c. (16d)

where the dynamic variables are v(~r, t), ~c(t), ω(t), ~R(t)
and Θ(t).
In terms of the tip of the wave, equation (16a) is the

original reaction-diffusion equation (1) written in the co-
moving FoR, equations (16b), (16c) define the attach-
ment (pinning) of the tip to this FoR, and equations (16d)
describe the movement of the FoR and, therefore, of the
tip.
Equations (16b), (16c) imply that the position

(xtip, ytip) and orientation Φ of the tip during calcula-
tions in the laboratory FoR are defined as

u(l1)(xtip(t), ytip(t), t) = u∗, (17a)

u(l2)(xtip(t), ytip(t), t) = v∗, (17b)

Φ(t) = arg
(

(∂x + i∂y)u
(l3)(xtip(t), ytip(t), t)

)

(17c)

and the comoving FoR is chosen so that in it,
(xtip, ytip) = (0, 0) and Φ = π/2 at all times. Unlike
other equations of system (16), these are not prescrip-
tive and is essentially an arbitrary choice, dictated by
properties of particular systems. We shall refer to the
pinning conditions (16b,16c) as “Choice 1”, as below we
shall consider a variation of these, which we call “Choice
2”.
When h = 0, the system (16) decouples, as its upper

part including (16a), (16b) and (16c) becomes indepen-
dent of the lower part (16d). This is the “skew-product”
decomposition, the upper part describing the dynamics
in the space of group orbits, so called “quotient system”,
and the lower part the “symmetry group extension”, i.e.
dynamics along the group, which depends on but does not
affect the quotient dynamic. The connection between the
quotient system and the group extension is via the dy-
namic variables (~c, ω); in the following, we refer to these
three quantities as “quotient data” for brevity.
The skew-product representation has been useful for

the analysis of various types of meander of spiral waves
[29, 30, 37, 38]. Note that the approach used in [30, 38]
(also see references therein) is based on the assumption
that the meandering pattern in question is considered
in the vicinity of a bifurcation from the rigidly rotat-
ing spiral wave solution, so that the quotient dynamics
can be reduced to the centre manifold, hence instead of
equations (16a), (16b) and (16c), these studies consid-
ered normal forms on the corresponding centre manifolds.
However, as noted in [39], the Centre Manfold Theorem
is not applicable for spiral waves, so this approach seems
to be fundamentally flawed. This technical difficulty of
course does not in any way affect the validity of system
(16), which, as we have just demonstrated, is derived by
elementary means without recourse to any bifurcations.
In the rest of the paper, we consider system (16) as a

computational tool, rather than an instrument of theo-
retical analysis. The disadvantage of the original system
(1) as a computational tool is that it requires a big com-
putational grid to simulate dynamics of a spiral in an
infinite medium, particularly when the tip of the spiral
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performs excursions to large distances. This is actually
not necessary, as the dynamics of the spiral is mostly de-
termined by the events in some finite vicinity of its tip
[24]. The system (16) takes advantage of this property so
that the PDE calculations are done always in some fixed
vicinity of the spiral wave, whereas the movement of the
tip is described by the ODE part.

III. NUMERICAL IMPLEMENTATION

a. Discretization. We use time discretization with
constant step ∆t and square spatial grid with step ∆x,
covering spatial domain (x, y) ∈ [−L/2, L/2]2, so that

v((i − i0)∆x, (j − j0)∆x, k∆t) ∼ v̂
k
i,j

=
(

v̂
(l),k
i,j | l = 1, . . . , n

)

, i = 0, . . . Nx, j = 0, . . .Ny,

Nx = Ny = L/∆x,

and the grid coordinates of the origin are

i0 = (Nx + 1)/2, j0 = (Ny + 1)/2

(we only use odd values of Nx = Ny). We designate

the k-th time layer of the numerical solution as V̂
k =

(

v̂
k
i,j | i = 1, . . .Nx, j = 1, . . .Ny

)

. We discretize the ODE

dynamic variables on the same time grid, i.e. ~R(k∆t) ∼

~̂Rk etc.
b. Operator splitting. We rewrite equation (16a) in

the form

∂v

∂t
= F [v] +H[v; ~R,Θ] +A[v;~c, ω] (18)

where differential operators F , H and A are defined as

F [v] = D∇2
v + f(v), (19a)

H[v; ~R,Θ] = h(v, eγ̂Θ · ∇v, ~R + eγ̂Θ~r, t), (19b)

A[v;~c, ω] = (~c · ∇)v + ω
∂v

∂θ

= (cx − ωy)
∂v

∂x
+ (cy + ωx)

∂v

∂y
. (19c)

Let F̂ , Ĥ and Â be discretizations of F , H and A. Our
computations proceed as follows:

V̂
k+1/3 = V̂

k +∆tF̂
(

V̂
k
)

, (20a)

V̂
k+2/3 = V̂

k+1/3 +∆tĤ
(

V̂
k+1/3, ~̂Rk, Θ̂k

)

, (20b)

V̂
k+1 = V̂

k+2/3 +∆tÂ
(

V̂
k+2/3, ~̂c k+1, ω̂k+1

)

, (20c)

µ1,2,3

(

V̂
k+1

)

= 0, µ4

(

V̂
k+1

)

> 0, (20d)

Θ̂k+1 = Θ̂k +∆t ω
k+1, (20e)

~̂Rk+1 = ~̂Rk +∆t e
γ̂Θ̂k+1

~c k+1. (20f)

c. Kinetics. As specific examples, we consider two
models, the FitzHugh-Nagumo model [40, 41]:

f :

[

u
v

]

7→

[

α−1
(

u− u3/3− v
)

α(u + β − γv)

]

(21)

and Barkley’s model [32, 42]:

f :

[

u
v

]

7→

[

c−1u(1− u) (u− (v + b)/a)
u− v

]

(22)

both with D =

[

1 0
0 0

]

.

d. Reaction-diffusion step. The computational
scheme is designed as an extention to the standard
approach to simulation of spiral waves. Specifically, we
chose Barkley’s EZ-SPIRAL [32, 33, 42] as the starting
point, and extended it to add the other computational
steps. So the reaction-diffusion step (20a) is as imple-
mented in EZ-SPIRAL, with central 5-point difference
approximation of the Laplacian, without any features
specific to the Barkley model, such as implicit treatment
of the kinetic terms, and with appropriate modifications
when FitzHugh-Nagumo model is used.
e. Perturbations. We consider one particular type of

nonzero perturbation, the electrophoresis,

h = E∂xu,

h̃ = E (cos(Θ)∂xv(r) − sin(Θ)∂yv(r)) , (23)

where E is a diagonal matrix, E =

[

E1 0
0 E2

]

, ||E|| ≪ 1.

For a reaction-diffusion system this perturbation can de-
scribe movement of the reagents in response to elec-
tric field with velocities −E1 and −E2 along the x-axis.
For E = ǫD, this perturbation can also approximately
describe the movement of an axially symmetric scroll
ring. For a cylindrical system of coordinates (r, θ, z):
x = r cos θ, y = r sin θ, z = z, the diffusion term has
the form D∇2

u = D(∂2
r + 1

r∂r +
1
r2 ∂

2
θ + ∂2

z )u, which for
∂θ = 0 and large r is equivalent to an unperturbed diffu-
sion term with a 2-dimensional Laplacian in (r, z) plane
plus a small perturbation 1

rD∂ru. If the filament of the
scroll is located at large values of r ≈ 1/ǫ and as the dy-
namics of the scroll is mostly determined by the events
near its filament, then 1/r can be approximately replaced
with ǫ.
Perturbation (23) violates only rotational symmetry of

the problem, preserving symmetry with respect to trans-
lations in space and time. Hence h̃ explicitly depends
only on Θ. This limitation is not principal and transla-
tion symmetry breaking perturbations can be considered
similarly, in which case h̃ would also explicitly depend on
X,Y and/or t. We discretize the first spatial derivatives
in the perturbation term using upwind second-order ac-
curate differences, and use explicit Euler timestepping.
In the absence of perturbations, h = 0, the perturbation
step (20b) is of course omitted and V̂

k+2/3 = V̂
k+1/3.
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f. Tip definition and pinning conditions. Discretiza-
tion of the pinning conditions (16b), (16c), using l1 = l3,
and the right-side first-order discretization of the x-
derivative, gives

v̂
(l1),k
i0,j0

= u∗, (24a)

v̂
(l2),k
i0,j0

= v∗, (24b)

v̂
(l1),k
i0+1,j0

= u∗, (24c)

where (i0, j0) are grid coordinates of the origin. This
works in principle, but gives rather inaccurate and noisy
approximations for ω, which get worse for finer discretiza-
tions. This is typical for numerical differentiation. We
overcome this by enhancing the spatial discretization
step, by replacing the condition (24c) with

v̂
(l1),k
i1,j1

= u∗, (25)

where the grid point (i1, j1) was chosen some way away
from the centre point, (i1, j1) = (l0, j0)+(iinc, jinc). This
means replacing the third pinning condition (16c) with

v(l1)(~rinc, t) = u∗, (26)

where ~rinc = (∆xiinc,∆xjinc). Empirically, we have
found that the length of the displacement |~rinc| should
be of the order of, but not exceeding, one full wavelength
of the spiral.
This revised orientation-pinning condition still does

not define the position uniquely, as illustrated by fig. 2.
An extra inequality is required to distinguish between
different solutions satisfying conditions (24a,24b,25). We
use

v̂
(l1),k
i1,j1

< v∗. (27)

corresponding to

v(l1),k(~rinc, t) < v∗. (28)

Specifically, we chose l1 = l3 = 1 and l2 = 2. Condi-
tions (27) and (28) then mean that the third pinning
condition (25,26) ensures that the front, rather than
the back, of the excitation wave passes though the grid
point (i1, j1). So equations (16b,26,28), with their dis-
cretizaions (24,27) are our “Choice 2” pinning conditions.
The Choice 1 and Choice 2 pinning conditions define

different RMs and different quotient data ~c(t), ω(t), for
the same solution u(~r, t). However, the two FoRs they
define have a common origin and differ only by the ori-
entation angle. So if (~c, ω) are quotient data for Choice
1 pinning conditions, and (~c ′, ω′) are quotient data for
Choice 2 pinning conditions, then we have

~c = eγ̂(Φ−π/2)~c ′, ω = ω′ + dΦ/dt, (29)

where Φ the tip orientation angle in the Choice 2 co-
moving FoR, so Φ− π/2 is angle of one FoR against the
other.

A

B

FIG. 2: (Color online) Non-uniqueness of the revised tip pin-
ning condition.

g. Advection. We use an upwind second-order accu-
rate approximation of the spatial derivatives in Â. The
steps (20c) and (20d) are done in conjunction with each

other. The discretization of V̂
k+1 at the tip pinning

points, resulting from (20c), is used in the three equa-

tions (20d) to find the three unknowns ~̂c k+1
x , ~̂c k+1

y and

ω̂k+1, so that the pinning conditions (20d) are always
satisfied exactly (to the processor precision) after every
step [52].
h. Boundary conditions. Since the boundaries in

the comoving FoR do not represent any physical real-
ity but are only a necessity of numerical approximation,
the results can only be considered to be reliable if they do
not depend on the boundary conditions. So we use both
Dirichlet and Neumann bondary conditions and compare
the results. For Dirichlet conditions, we use boundary
values of the resting state vr, such that f(vr) = 0.
i. Tip trajectory reconstruction. The steps (20e)

and (20f) are simple first-order implementations of the

corresponding ODEs. The resulting Θ̂ is used in calcula-
tions of the H step when the perturbation is on. Other-

wise, Θ̂ and ~̂R are calculated only for the record.
j. Some details of software implementation. For sta-

bility purposes, we ensure that the following inequalites
are observed during computations,

|cx| ≤
∆2

x

2∆t
,

|cy| ≤
∆2

x

2∆t
,

|ω| ≤
1

NX∆t
.

This is an empirical choice motivated by von Neumann
stability analysis.
When the absolute values of cx and cy found in (20c)

and (20d) are beyond these limits then they are restricted
to the intervals stated above. Also, we eliminated the
need to restrict the values of cx and cy to their stabil-
ity limits by moving the spiral wave solution so that the
tip of the spiral wave is in the center of the box, using
the standard EZ-SPIRAL’s ‘mover’ function, which per-
forms translation of the solution by an integer number
of grid steps, suitably extrapolating the solution where
necessary near the boundaries.
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For ω, we implemented the restriction that if |ω| ex-
ceeded its maximum stability value, then then we set
ω = 0. Effectively this means that unless the orientation
of the spiral wave is already very near the standard ori-
entation satisfying equation (25) and inequality (27), the
code computes a solution of the problem

∂v

∂t
= D∇2

v + f(v) + h

(

v,∇v, ~R + eγ̂Θ~r, t
)

+ (~c · ∇)v, (30a)

v(l1)(~0, t) = u∗, v(l2)(~0, t) = v∗, (30b)

d~R

dt
= eγ̂Θ~c (30c)

instead of (16). That is, it performs reduction by the
subgroup of translations of the Euclidean group.
A typical run of the program in the interactive mode

starts from obtaining a spiral wave solution in the stan-
dard “ride-off” mode, by solving initial-value problem
(1). When the spiral wave is initiated so there is one
tip in the solution, the user switches the program to the
“ride-on” mode, with calculations according to the above
scheme. On the switch, the program first of all moves the
tip of the spiral to the centre of the box via EZ-SPIRAL’s
‘mover’ function, i.e. by parallel translations of the solu-
tion, supplementing the missing pieces near boundaries
by duplicating the existing boundary values. From then
on, the spiral continues to rotate with its tip fixed at the
centre of the box, thus solving the problem (30). In this
regime, only the first two pinning conditions are satisfied,
and only cx and cy are calculated and used, where as ω
is calculated but replaced with zero, until it falls within
the stability limit and the fourth inequality-type pinning
condition is satisfied. From that point, the program pro-
ceeds in the fully engaged mode, calculating the problem
(16).

IV. PRIMARY EXAMPLES: RIGIDLY
ROTATION AND MEANDER

First we illustrate how our approach works using two
examples. One example uses Barkley model with rigidly
rotating spiral waves, and the other is FitzHugh-Nagumo
model with meandering spiral waves.
Figure 3 illustrates the work of EZRide in the case

of a rigidly rotating spiral wave. The panels represent
three consecutive runs, in different regimes: the “direct
numerical simulations” (DNS) of system (1), then the
“skew-product” calculation in the comoving FoR, and
then again the DNS in the laboratory FoR. The skew-
product calculation in turn consists of two parts. The
first part is described by (30) where only the two transla-
tion pinning conditions are engaged, so that the position
of the tip of the spiral is fixed, but not its orientation, so
the FoR is co-translating but not co-rotating. The sec-
ond part is where all four pinning conditions are engaged,
and the FoR is co-translating and co-rotating. It is seen

0 1 2 3 4 5

6 7 8 9 10 11

11 12 13 14 15 16

17 18 19 20 21 22

22 23 24 25 26 27

28 29 30 31 32 33

FIG. 3: (Color online) Three consecutive runs of Barkley
model, a = 0.52, b = 0.05, c = 0.02, L = 20, ∆x = 1/5,
∆t = 1/2000, ~rinc = (2, 0). The runs t ∈ [0, 11] and
t ∈ [22, 33] are direct simulations. The run t ∈ [11, 22] is
a quotient system simulation, the pinning points are indi-
cated by small white crosses. The third pinning condition is
engaged at t ≈ 16.5.

from fig. 3, that after a transient period, the solution in
the fully comoving FoR becomes stationary. This corre-
sponds to the definition of a rigidly rotating spiral wave
as a relative equilibrium.

Figure 4 shows a similar set of runs for a different case,
where the spiral wave is not stationary but is meandering.
In this case, the solution in the comoving FoR is not
stationary, but periodic in time. This corresponds to
the definition of a meandering spiral wave as a relative
periodic orbit.

Figure 5(a,b) show selected pieces of tip trajectories
obtained as a result of the runs shown in fig. 3 and fig. 4.
The discretization steps there are deliberately chosen
crude, to allow very fast running simulations, and also
to illustrate the difference introduced by the change of
method of computation. The tip trajectories obtained by
reconstruction from the quotient data are qualitatively
similar to the tip trajectories obtained in DNS. However,
the quantitative difference is also quite evident. In the
case of rigid rotation, the reconstructed trajectory radius
is noticeably bigger than that from DNS, and the centres
of the meandering patterns in different runs are offset
against each other. As panels (c,d) in the same figure
show, these discrepancies decrease when the discretiza-
tion steps are refined.

Figure 6 shows the tip and quotient system trajecto-
ries, obtained in laboratory and comoving FoR calcula-
tions, for a meandering spiral. This is drawn for the
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0 2 4 6 8 10

12 14 16 18 20 22

22 24 26 28 30 32

34 36 38 40 42 44

44 46 48 50 52 54

56 58 60 62 64 66

FIG. 4: (Color online) Three consecutive runs of FHN model,
α = 0.2, β = 0.7, γ = 0.5, L = 30, ∆x = 1/3, ∆t = 1/720,
~rinc = (20/3, 0). The runs t ∈ [0, 22] and t ∈ [44, 66] are
direct simulations. The run t ∈ [22, 44] is a quotient system
simulation, the pinning points are indicated by small white
crosses. The third pinning condition is engaged at t ≈ 27.5.

finer discretization steps, as in fig. 5(d). For comparison,
quotient data for both the laboratory and comoving FoR
calculations were recalculated for the Choice 1 pinning
conditions using (29). There is good agreement between
the two methods of calculations, within the expected ac-
curacy. More detailed analysis of the numerical accuracy
of our method is given in the next session.

V. NUMERICAL CONVERGENCE

Figure 7 illustrates the convergence of the results of
calculations of rigidly rotating spiral, using EZRide with
Neumann and Dirichlet boundary conditions, and DNS
using Neumann boundary conditions. In these calcula-
tions, the box size is fixed at L = 60 and the timestep
is changed with the spacestep so that ∆t = ∆2

x/40. For
ω(∆2

x) dependence, we also show the angular velocity
measured in direct numerical simulations. We do not
show |~c(∆2

x)| found in DNS, since obtaining it involves
numerical differentiation which gives accuracy insuffi-
cient for the convergence study.
Our discretizations are second order accurate in ∆x

and first order accurate in ∆t both in DNS and in the
riding mode, which corresponds to linear dependence of
any results on ∆2

x for ∆x → 0. We see in fig. 7 that this is
indeed the case. Linear extrapolation of the ω(∆2

x) gives
the values of ω(0) for laboratory and comoving calcula-
tions coinciding to within 10−3.

-2

 0

 2

 4

 6

-4 -2  0  2  4

1
2
3
4

X

Y

-3

-2

-1

 0

-2 -1  0  1

1
2
3
4

X

Y

(a) (b)

-2

 0

 2

 4

 6

-4 -2  0  2  4

1
2
3
4

X

Y

-3

-2

-1

 0

-2 -1  0  1

1
2
3
4

X

Y

(c) (d)

FIG. 5: (Color online) (a,b) Reconstructed tip trajectories
from (a) simulation shown in fig. 3 and (b) simulation shown
in fig. 4. The pieces labelled 1 are trajectories obtained in di-
rect simulations in the laboratory FoR. The pieces labelled 2
are trajectories obtained via co-translating simulations, with
first two pinning conditions engaged. The pieces labelled 3
correspond to co-moving (co-translating and co-rotating) sim-
ulations with all three pinning conditions engaged. The final
pieces labelled 4 correspond to direct simulations in a non-
moving FoR, which has been displaced with respect to the
laboratory FoR during the quotient system simulations. (c)
Same as (a), with ∆x = 1/10, ∆t = 1/4000. (d) Same as (b),
with ∆x = 1/10, ∆t = 1/4000.

One of the advantages of EZRide is the fact that the
simulations can be done in a smaller box compared to
DNS. So, the last test is convergence in box size. We
have calculated the rigidly rotating spiral by EZRide at
fixed ∆x = 1/15, ∆t = 1/9000 and L varying through
[15, 60] and found that both |~c| and |ω| vary by less than
10−3.

VI. APPLICATION I: THE 1:1 RESONANCE IN
MEANDERING SPIRAL WAVES

One of the cases where the DNS would meet with diffi-
culties, is the study of the the meandering of spiral waves
for parameters near the “1:1 resonance” between the Eu-
clidean and the Hopf frequencies. This case is marginal
between meandering patterns with inward petals and
outward petals. Near the resonance, the spatial extent
of the meandering trajectory becomes large, and for the
case of exact resonance, infinite, and the spiral appears
to be spontaneously drifting [25, 43]. Hence, following
the dynamics of the spiral wave in the comoving FoR
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FIG. 6: (Color online) Meander in the FHN model, calculated
in the laboratory frame of reference (DNS), and from quotient
system (EZRide). In (a), the meandering pattern is shown,
which for the EZRide curve is obtained by numerical integra-
tion of quotient data using (15). In (b–d), the projections of
the quotient data are shown, which for the DNS curves are ob-
tained by numerical differentiation of the tip trajectory, using
(15).
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FIG. 7: (Color online) Convergence of the rigidly rotating
spiral wave solution in the Barkley’s model.

presents an advantage.
We illustrate this using the FHN model. We fix the

discretization parameters at ∆x = 1/8, ∆t = 1/2560 and
L = 20. The choice of model parameter is influenced
by Winfree’s “Flower Garden” [44], which gives a rough
estimate for the location of the 1:1 resonance line in the
(α, β) plane at γ = 0.5. Using this information, we have
selected two values α = 0.2 and α = 0.25, and scanned
values of β across the resonance value, which we deter-
mined as β0 ≈ 0.93535 for α = 0.2, and β0 ≈ 0.81362 for
α = 0.25 at our discretization parameters.
The results are presented on figures 8–11. The shape of

trajectories is well known from the theory, and is outward
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FIG. 8: (Color online) The reconstructed tip trajectories in
FitzHugh-Nagumo system with α = 0.2, γ = 0.5 and varying
β.

petals for β < β0 and inward petals for β > β0, degener-
ating into spontaneous straightforward drift at β = β0.
The trajectory at β = β0 in fig. 8 is shown twice: once
for the whole duration as it was calculated, fig. 8(c), and
then a close-up of small part of it, fig. 8(d). Calculation
of this particular trajectory using DNS would require, by
our estimate, about five weeks, as opposed to 2.5 hours
used by EZRide.
The change of the quotient dynamics with changing β

is illustrated in fig. 9. As opposed to the tip trajectories,
there is no evident qualitative changes in the shape of
the limit cycle across β = β0. Note the very elongated
shape of the limit cycles in all three projections. We do
not know whether this has some theoretical explanation
or is merely incidental.
The parametric line α = 0.25 exhibits similar be-

haviour, as shown in fig. 10 and 11. This is closer to
the Hopf bifurcation line in the quotient system, called
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FIG. 9: (Color online) Various projection of the limit cycles in the quotient system corresponding to the trajectories shown in
fig. 8.

∂M line in [44]. Correspondingly, the size of the limit
cycles in the quotient system is smaller and they become
more oval-shaped Note that the scale of cy-axis is dis-
proportionately stretched in fig. 11, i.e. the Hopf central
manifold appears to be nearly orthogonal to that axis.
Again, there is no qualitative change in the quotient sys-
tem dynamics when crossing the 1:1 resonance.

VII. APPLICATION II: LARGE CORE SPIRALS

Another example where the spatial extent of the spiral
wave dynamics is large is the vicinity of Winfree’s “ro-
tors boundary” ∂R in the parametric space [44]. In the
vicinity of this boundary, the period of rotation and the
radius of the core of the spiral wave grow infinitely.
There are at least two different asymptotic theories,

based on different choice of small parameters, which aim
to describe the vicinity of ∂R. Hakim and Karma [45,
46] have developed a “free-boundary” asymptotic theory
applicable to FitzHugh-Nagumo type models in the limit
c → 0 or α → 0 in terms of our chosen kinetics, where
angular velocity ω typically decreases as

|ω| ∝ |p− p∗|
3
2 , p → p∗, (31)

where p is a parameter of the model such that p = p∗
corresponds to the ∂R boundary.
Elkin et al. [47] obtained an alternative asymptotic

based on assumptions which were not restricted to kinet-
ics of any particular kind, but which were not directly
validated. Their prediction was

|ω| ∝ |p− p∗|, p → p∗. (32)

Further analysis has suggested that these two alter-
natives are not actually antagonistic and may be even
observed in the same system in different parametric
regions [48]. Reliably distinguishing between the two
asymptotics is challenging for DNS as it requires a rather
close approach to the critical point p = p∗, which is not
known a priori, implying large tip trajectory radii and
correspondingly significant computational resources.

In here we present an example of studying this depen-
dence using calculations in the comoving FoR, which is
free from the above complication, as it can be performed
within the box of fixed size for all p.
For this study, we use Barkley’s model with varying

parameter p chosen to be a, varying from a = 0.48 down-
wards with step 0.001 until 0.43, with other parameters
fixed at b = 0.05 and c = 0.02. The discretization pa-
rameters are L = 30, ∆x = 1/8, ∆t = 1/2560 and
~rinc = (0, 7/4).

Selected stationary solution obtained in this way are
illustrated in fig. 12, and the graphs of ω(a) and cy(a)
are shown in fig. 13. We compare the features of the
observed solutions with those that are given by the two
asymptotic theories [48], and observe that

1. There is a critical value of the parameter a∗ ≈
0.456, at which the behaviour of the solution
changes qualitatively. At a = a∗, we observe a
nearly straight broken excitation wave.

2. For a > a∗, the solutions are spiral waves, that
is, broken excitation wavelets, which become less
and less convex as a → a∗, and have macroscopic
angular velocity which however diminishes in the
same limit.

3. For a < a∗ the solutions are retracting nearly
straight but slightly concave wavelets, with very
small angular velocity.

4. For a = a∗, the direction of movement of the tip
seems approximately orthogonal to the overall ori-
entation of the wave itself.

5. For a < a∗, the vertical component of vector ~c de-
pends on a in a way which is consistent with the
asymptotic |cy| ∝ |a− a∗|

1/2, see fig. 13(e,f). Since
the overall orientation of the wavelets, as seen in
fig. 12(a–c), is nearly vertical we can take cy as a
crude estimate of the “global tip growth rate” as
defined in [48].

6. For a > a∗, the angular velocity of solutions de-
pends on a in a way which is consistent with the
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FIG. 10: (Color online) Same as fig. 8, for α = 0.25.

asymptotic |ω| ∝ |a − a∗|, see fig. 13(b) but not
|ω| ∝ |a− a∗|

3/2, see fig. 13(c).

All these observations are in agreement with the the-
ory in [48] and can be used to empirically distinguish be-
tween the Elkin et al. asymptotics (corresponding to the
“I/V” parametric boundary in [48]) and Hakim-Karma
asymptotics (respectively, “J/C” boundary in [48]).
Feature 1 is inconclusive: existence of a critical so-

lution, called “critical finger” by Hakim and Karma, is
common for both J/C and I/V boundaries, but the shape
of this solution is different. It is asymptotically linear for
I/V boundary, and asymptotically logarithmic for J/C
boundary. Looking at fig. 12(d) and considering the ef-
fect of the boundary conditions, it is not clear which case
is nearer to the observed reality.
Feature 2 is common for I/V and J/C boundaries. The

phenomenological difference is that spirals close to I/V
boundary can be “growing” or “shrinking”, while spi-
rals close to J/C boundary can only be “growing”. The

movement of the tip in fig. 12(d–f) seems approximately
orthogonal to the orientation of the wavelet near the tip,
which is consistent with both cases.
Feature 3 tips the balance in favour the I/V bound-

ary since the broken wavelets are concave. According to
[48], the translating waves near an I/V boundary should
be concave, and those near an J/C boundary should be
convex.
Feature 4 is common for I/V and J/C, as in both cases

the critical fingers should have zero “global growth rate”.
Feature 5 is common for I/V and J/C boundaries.
Feature 6 is, in our opinion, a convincing evidence in

favour of an I/V boundary, since according to [48], near
I/V boundary the dependence ω(δ) is linear, whereas
near J/C boundary it is |ω(δ)| ∝ |δ|3/2.
An unequivocal interpretation of all theoretical pre-

dictions in the view of our present numerical results
would require further investigation, as the asymptotics
of [47, 48] operate with a “crest line” of an excitation
wave. There is no obvious operational definition of this
line which would be valid up to the tip, and some of
the predictions concern the mutual orientation of this
line and the tip velocity. However the predictions that
can be unambiguously interpreted, seem to indicate that
for the model considered here, we have the case of I/V
boundary, i.e. Elkin et al. asymptotics, rather than J/C
boundary corresponding to Hakim-Karma asymptotics.
The last observation here is that of the small angular

velocity ω calculated for the “retracting waves” at a < a∗,
seen on fig. 12(a–c). As we already noted, the small-
ness of these ω values is consistent with the theoretical
prediction of translating but not rotating waves. How-
ever when these values are magnified, we observe that
they demonstrate a peculiar power law |ω(a)| ∝ |a− a∗|

p

where p ≈ 1/4.3, see fig. 13(d). A theoretical explanation
of this requires further study; it is clear, however, that ω
in this area is strongly affected by the boundaries, as the
curves for L = 30 and L = 35 differ quite significantly.

VIII. APPLICATION III: ELECTROPHORESIS
OF MEANDERING SPIRAL

Finally, we illustrate calculation of the movement of
spiral waves in a perturbed reaction-diffusion system. We
consider FitzHugh-Nagumo kinetics at the same param-
eters as in fig. 4, and add to it the “electrophoresis” per-
turbation (23) in the right-hand side, with E = ǫD.
Results of the simulations are presented in fig. 14. The

unpertubed spiral waves for these parameters are me-
andering, so with the perturbation present, we observe
meandering with drift. The drift proceeds with a con-
stant average velocity, which is consistent with the fact
that the perturbation violates only the rotational but not
the translational symmetry of the problem. The average
drift is to the left, which corresponds to a collapsing scroll
wave. So at these parameter values, the scroll waves have
positive tension, inasmuch as this concept can be applied
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FIG. 11: (Color online) Same as fig. 9, for α = 0.25.
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FIG. 12: (Color online) Snapshots of relative equilibria in
Barkley model obtained at different values of parameter a.
The arrows indicate the direction of the vector ~c.

to meandering scrolls.

In the calculations in the laboratory FoR, the time
during which the drift can be observed is limited, as when
the spiral reaches the left boundary, it terminates. In the
comoving FoR, this drift can be observed indefinitely.
Comparing the traces in fig. 14 we see that although, as
we know from figures 5 and 6, the discretization is too
crude to give quantitative agreement between laboratory
and comoving calculations in detail, the drift velocities
obtained in these two ways are very similar.

We illustrate the relative advantages of the two meth-
ods of calculation by comparing the computation costs.
The laboratory FoR simulation, for L = 30 and t ∈
[0, 300] has taken 325 sec (the spiral has annihilated at
the left at t ≈ 237). The time taken by the comoving FoR
simulation for the same boxsize L and the same t interval
is 462 sec, i.e. is naturally somewhat longer due to the
extra effort required for the advection term calculations.
However, the comoving FoR calculation proceeded un-
abated where the laboratory FoR calculation failed due
to annihilation with the border. To continue the labora-
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FIG. 13: (Color online) Dependencies ω(a) and cy(a) of the
relative equilibria, for different L as indicated. On panel (a),
the symbols correspond to the selected values of a used in
fig. 12.

tory FoR calculation to the same extent we would have to
increase the box size L with a corresponding increase in
computation cost. Moreover, virtually the same result,
as far as drift velocity is concerned, can be obtained by
comoving FoR calculation with L = 20, and it takes only
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FIG. 14: (Color online) Trajectories of tips of drifting meandering spirals calculated in the laboratory FoR (for L = 30) and
in the comoving FoR (for L = 30 and L = 20). The thin black dotted lines designate the boundaries of the calculation box
in the laboratory FoR where the initial position of the tip is in the centre. The parameters are the same as in fig. 4 and the
perturbation is h = ǫD∂xu, where ǫ = 0.1.

202 sec. Of course the drift in the laboratory FoR with
L = 20 would terminate even earlier.

IX. DISCUSSION

We have described a numerical method of solving a
reaction-diffusion system of equations describing a spiral
wave, in a frame of reference which is moving with the
tip of that wave.
We have shown the method can provide accurate solu-

tions, and that there are applications where the computa-
tional cost of our method can be considerably lower than
that of the conventional approach, or the conventional
approach is just inapplicable. As always, the compu-
tational advantages are particularly essential in case of
parametric studies, for which the method is well suited.
Although the applications were chosen just to provide

some meaningful examples of use of the method, the re-
sults obtained there can be of scientific value themselves.
So, we have investigated the vicinity of the “1:1 res-

onance” manifold in the parametric space, which corre-
sponds to spontaneous drift of spirals, and which sepa-
rates meandering patterns with outward petals and in-
ward petals. Henry [49] has proposed a theory which
implies that this manifold coincides or is an analytical
continuation of the manifold where the filament tension
of scroll waves vanishes. There are reports in literature
confirming that change of sign of filament tension is as-
sociated with change from outward to inward petals in
meandering patterns, but also examples where there are
no such correlation, e.g. [50] and references therein. Our

simulations indicate that as far as orbit manifold dynam-
ics of the spiral is concerned, the 1:1 resonance is not
characterized by any special features. Hence any special
features of this resonance ought to be due to the Eu-
clidean extension of the orbifold dynamics. Since scroll
filament tension can also be defined via properties of the
spiral wave solutions within the comoving FoR, any ge-
netic and generic relationship between the two manifolds
seems unlikely (but, of course, cannot exclude the possi-
bility of such relationship in some special cases).
We have also investigated the vicinity of the “∂R”

manifold in the parametric space, which has provided
a strong evidence towards one of the two theoretical pos-
sible asymptotics, namely Elkin et al. [47] asymptotics
as opposed to Hakim-Karma [45] asymptotics. It should
be noted here that while Hakim-Karma asymptotic the-
ory was based on assumptions which have been well es-
tablished, the Elkin et al. asymptotic theory was using
assumptions, validity of which could not be asserted at
that moment. Here we have presented firm evidence that
Elkin et al. asymptotis is not a mere theoretical possibil-
ity but is indeed observed in reality (see also [36] and
a discussion below). A direct confirmation would be via
calculation of the “response functions”, i.e. critical eigen-
functions of the adjoint linearized operator of the critical
finger solution. This would require obtaining first a good
quality critical finger solution, so the method described
here can be a significant step towards this goal, too.
Finally, we have demonstrated that calculations in

the comoving FoR can be efficiently used to study
perturbation-caused drift of spirals, including meander-
ing spirals. Although the asymptotic theory of drift of
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meandering spirals is yet to be developed (see, however,
a preliminary draft of such theory in [51]), we can expect,
for instance, that scroll waves in the FitzHugh-Nagumo
model with the parameters as in fig. 4, 14 will have “pos-
itive tension”, i.e. tend to collapse, rather than develop
a scroll wave turbulence. The advantage of calculating
drift in the comoving FoR, apart from computation cost,
is absence of “pinning” effects of spatial discretization,
both in terms of discrete space steps and discrete spatial
directions, on the drift.
Our approach can be compared to the approach pro-

posed by Beyn and Thummler (BT) [35]. BT use a sim-
ilar mathematical idea of decomposing the evolution of
the nonlinear wave into the motion of the wave and evo-
lution of its shape, which in the functional space appears
as decomposition into motion along and across the Eu-
clidean symmetry group orbits. But there are also dif-
ferences. There are technical details of implementations
which are probably of lesser importance, such as choice
of polar vs Cartesian grid, central vs upwind discretiza-
tion of spatial derivatives and explicit vs semi-implicit
discretization in time. More significant differences are
in the “phase conditions” they use, which play the same
role as, but are qualitatively different in nature from, our
“pinning conditions”. One aspect is that the phase con-
ditions involve integral functionals. We show here that
this is not necessary, and local conditions like (24) are
simpler. The other aspect is the one we discussed in
section II: the BT phase conditions appear to be well
suited for calculation of relative equilibria (rigidly rotat-
ing spirals) but not necessarily for relative periodic solu-
tions (meandering spirals). Further, the phase conditions
proposed by BT were not intended for use with symme-
try breaking perturbations that produce drift of spirals.
And indeed, BT comment in their paper that “it seems
quite a challenging task to freeze drifting spirals or recog-
nize meandering spirals as periodic orbits.” As we have

demonstrated, our approach works both for meandering
spirals and for drifting spirals.

After completing this study we became aware of a work
by Hermann and Gottwald (HG) [36] who also investi-
gated the large core limit, using a further development
of the BT method. HG have paid a great deal of attention
to refining the boundary conditions so as to minimize the
effect of boundaries onto the quotient dynamics. This has
allowed them, in particular, to verify the linear scaling
law (32) for seven decades of variation of |ω|, compared
to mere one decade as shown in fig. 13. Notice that as
shown in the same figure, our progress towards smaller
values of |ω| is limited precisely by the influence of bound-
aries. HG also have explicitly addressed the issue of the
numerical stability of the computations, which we treat
in this study purely empirically.

We believe that combining the advantageous features
of the approach developed by BT and HG, and the one
proposed here, is an interesting topic for future work,
which may yield further results about spiral wave dy-
namics, that are not possible, or very difficult, to obtain
by direct numerical simulations.
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