Running tails as codimension two quasi-solitonsin excitation taxis waves with negative
refractoriness.
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We describe a new type of wave phenomena observed in reaction-taxis systems of equations. This is “running
tail”, a localized stable perturbation steadily moving laterally along the back of a plane wave. This phenomenon
is related to “negative refractoriness”, a property observed in some excitable systems with cross-diffusion instead
of usual diffusion. We suggest a simple mechanism of such running tails for the Keller-Segel model describing
chemotaxis of bacteria on the nutrient substrate. \We also demonstrate that collision of running tails may happen

by “quasi-soliton” and “half-soliton” scenarios.

PACS numbers: 87.10.+e

Introduction Reaction-diffusion systems are the most
studied class of models describing waves and patterns in spa-
tially distributed systems [1]. However, mechanisms of spatial
interaction in real system vary widely beyond simple diffu-
sion. For instance, “cross-diffusion” [2] is important in the
propagation of forest boundary [3], in chemical and biologi-
cal pattern formation [4, 5], turbulence-shear flow interaction
in plasmas [6], and displacement and velocity interact cross-
diffusively in the Burridge-Knopoff model of tectonic slips
[7]. A characteristic feature of living systems is their ability
to react to changes of the environment, and to move towards,
or away from, an environmental stimulus, behavior known as
taxis. Of special interest are population taxis waves. Mathe-
matical description of those includes nonlinear cross-diffusion
[8-10]. If the usual diffusion is supplemented or replaced with
taxis of cross-diffusion terms in an excitable system of equa-
tions, the properties of propagating waves can change radi-
cally [11-15].

In this paper we describe a new phenomenon in this
kind of models. We consider distributed populations in a
predator-prey relationship with each other. Spatial evolu-
tion is governed by two processes: positive taxis of predators
up the gradient of prey (pursuit) and negative taxis of prey
down the gradient of predators (evasion), yielding nonlinear
“cross-diffusion” terms. The resulting mathematical model of
“reaction-taxis” is a system of two partial differential equa-
tions, We consider a two-dimensional version of the model,
studied earlier in [13, 14]:

%1; = f(P.Z)+h_V (PVZ),
%f = g(P.Z)— hyV (ZVP), )

where P(z,y,t) and Z(x,y,t) are biomass densities of
the prey and predator populations. In system (1) h_ is the
coefficient determining the taxis of prey down the gradient
of predators (evasion), h is the coefficient determining the
taxis of predators up the gradient of prey (pursuit). The non-

linear functions f (P, Z) and g(P, Z) describe local dynam-
ics,including growth and interaction of the species. We as-
sume that this local interaction takes the Truscott-Brindley
[16] form,

f(P,Z) = BP(1—P)— ZP?/(P%?+1?),
9(P,Z) = vZP*/(P*+V?) —wZ, @)

System (1) have large parametric regions where excitation
waves interact in a “quasi-soliton” way: they can penetrate
through each other, and also reflect from impermeable bound-
aries [11, 12, 14]. Sometimes “half-soliton” interaction is pos-
sible, when of two colliding waves, one annihilates and the
other continues to propagate[13].

Here we describe a new wave phenomenon in system (1),
“running tail”, and show that such running tails can exhibit
both quasi-soliton and half-soliton interaction with each other.

Running tail. We studied system (1,2) numerically, at
the same parameter value as in [12]: v = 0.07, g = 1,
w = 0.004, v = 0.016 and for varying ~4_ and h. In a two-
dimensional domain, (z,y) € [0,L;] x [0, L,], we initiated
a propagating taxis wave in the x direction, independent on
the y coordinate. Then we “cut out” a stripe [0, L] x [0, L4],
where Ly < L,, by setting both variables to the resting state
values, P = Py = 0.04, Z = Z, = 0.155 within that stripe.
In fact, we considered effectively = € [—oc, 4+o00], which was
achieved by shifting the whole calcultion domain along x axes
each time the wave approached the right boundary to a certain
distance Lgp;5: = 25. We used “upwind” scheme to approx-
imate the taxis terms, see [12] for details, with discretization
steps 0x = oy = 0.5 and 6t = 0.001. Selected control ex-
periments used smaller steps, down to 02 = dy = 0.25 and
ox =0y =0.1.

Germination of the free end of the broken wave, see
fig. 1(a,b), and its interaction with the impermeable boundary
y = 0, leads to formation of a “tail”, a short wavelet attached
to the back of the mother wave which is now restored and
whole, see fig. 1(c). This “tail” wavelet propagates along the
back of the mother plane wave as it goes ahead. In doing so,
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FIG. 1: Formation of a wavelet and propagation of the running tail along the back of a plane wave, and its reflection from impermeable
boundaries. Arrows show direction of propagation of the mother wave and the running tail. The parameters are h- = 4,hy = 2.3;
L. x L, =150 x 100, L, = 25. The domain is effectively infinite in the x direction.

the tail is reflected from the impermeable boundaries y = L,
and y = 0, see fig. 1(d-h). This process of propagation and re-
flection continues without decay. In our simulations we have
followed it up to ¢ = 2500.

To check whether the running tail is a transient of the inter-
actions with boundaries or a truly stable and persistent phe-
nomenon, we performed simulations with periodic bound-

ary conditions along the y direction, i.e. (P, Z)(z,0) =

initial conditions for such simulations were the running tail
solutions obtained in a similar domain with non-flux bound-
aries; that is, we changed boundary conditions from non-flux
to period at a certain time moment. These simulations have
shown that the propagating tail is stable and reflections from
impermeable boundaries is not necessary for it to persist.

The running tail seen in fig. 1 moves simultaneously in two
directions: in the direction of mother wave propagation, along
the z axis, and along the back of the mother wave, along the
y axis. So the absolute speed of the running tail is higher
than the speed of the plane wave. Remember that in reaction-
diffusion excitable systems, a back of a propagating wave
has a zone of absolute refractoriness where initiation of an-
other wave is impossible, and a zone of relative refractoriness
where such initiation is impeded and a hew wave propagates
slower. So here in our cross-diffusion model we see a new
phenomenon, “negative refractoriness”, where a new wave
in the wake of an existing one propagates faster rather than
slower.

Negative refractoriness is related to the unusual shape of the
dispersion curve in this system. Fig. 2 shows the propagation
speed of plane waves in (1) with periodic boundary condi-
tions as a function of the period, for selected values of param-
eters. Method of calculation was as in [14]: a wave was initi-
ated in an interval of large length L with no-flux boundaries,
then boundary conditions changed to periodic, then L was de-

creased in small steps and the established wave speed v(L)
measured at each value of L. Fig. 2 shows that if A, > 0,
then v(L) > v(oco) for short L, that is, waves closely follow-
ing each other, propagate faster than a solitary plane wave.
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FIG. 2: Dispersion curves of periodic plane waves in system (1):
propagation speed v as function of spatial period L, for fixed h— = 4
and values of h shown as labels at curves.

The detailed mechanisms of these unusual phenomena re-
quire further investigation. A simple qualitative explanation
of the running tail could be done for bacterial population
waves due to chemotaxis of bacteria to the gradient of the nu-
trient substrate described by a variation of Keller and Segel
model [8, 9] of the form:

%_lj = YF1(S)B — hy V (BYVf(S))
o~ B ©

where B(z,y,t) is biomass density of bacteria; S(x,y,t) is
concentration of substrate; functions f;(S) = S/(S + ), 7,
0, c1, co, hy are constants. The spatial gradient of the sub-
strate is caused by its consumption by bacteria. This model
also has running tail solution, as illustrated in fig. 3(a). A
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FIG. 3: Running tail in bacterial population waves model (3). (a) A snapshot of the bacterial population density. (b) Instant profiles of the
variables across the mother wave. (c) Instant profiles of the variables along the back of the mother wave, at the distance I = 15 from its front,
across the running tail. In (b) and (c), the bold lines are for B and thin line for S. Parameters: v = 0.002, 8 = 0.02, ¢; = 0.3, c2 = 0.01, h4

=40, L. x L, =100 x 75

shoot of bacterial wave, formed on reflection from the imper-
meable boundary, creates a gradient of substrate concentra-
tion, fig. 3(c), which stays after passage of the mother plane
wave, fig. 3(b).

Interactions of running tails We initiated two-tail solu-
tion similarly to single tail solutions, this time cutting out two
stripes, 0 <y < Ly, Ly — Ly <y < L,. We illustrate here
two cases. The first case, L1 = Lo, is shown on fig. 1. The
two running tails were formed, fig. 1(a-c). They interacted
in a quasi-soliton manner: penetrated through each other, and
also reflected from impermeable boundaries fig. 1(d-h).

The second case, shown in fig. 5 is for assymmetric initial
conditions, with L; < Lo. The two running tails first demon-
strate quasi-soliton interactions in collisions with imperme-
able boundaries and with each other (panels a—e). Then they
experience a half-soliton interaction where only one of two
colliding tails survives and the other decays (panels f-h). This
is analogous to the interaction of taxis waves we described in
[13], when interaction of two waves of different widths could
result in the thicker one suppressing propagation of the thin-
ner one. Notice that the shape and thickness of the tails is
significantly affected by the curvature of the mother wave. As
this curvature smoothens out, a difference in the shapes and
thicknesses of the two tails emerges. This difference is due to
non-synchronous collisions of the tails with the boundaries.
So the second impact of the two tails (panel f) the thinner one
decays and the thicker one continues to propagate (panels g,
h).

Conclusion We have described new types of wave phe-
nomena in an excitable cross-diffusion system of equations
modelling a predator-prey system. These are codimension two
waves or “waves running along waves”. They have some ap-
parent similarity to the spin flames, when intensive reaction
sites move along a combustion front [17, 18].

The negative refractoriness may look similar to “supernor-
mal excitability” observed in some cardiac and neural tissues,

where there is a period after an action potential when the ex-
citation threshold is lower than in the resting state. However
the phenomenon described here is different, as it is not due
to special local properties of the medium constituents, but to
special form of spatial interaction.

Formation of a “tail shoot” was observed in experiments
with quasi-soliton interaction of bacterial waves [19], and also
in two-dimensional numerical simulations of partial reflection
of taxis waves [14]. However, in those works the tail shoot
did not move along the mother wave. Possibly, some analogy
of quasi-soliton interaction of running tails is observed in de-
velopmental waves in myxobacteria, where in early stages of
their development, starving myxobacteria organize their mo-
tion to produce a periodic pattern of traveling cell density
waves. Myxobacteria waves appear to pass through one an-
other unaffected [20].
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FIG. 4: Quasi-soliton interaction of running tails. Parameters h— = 4, hy = 2.3, L, x L, = 150 x 100, L1 = Lo = 25. The domain is

effectively inifinite in the x direction.
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FIG. 5: Half-soliton interation of running tails. h— = 4, h4 = 2.3; Ly x L, = 150 x 100, L1 = 25, Ly = 45. The medium is effectively

infinite in the « direction.
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