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Abstract

We consider the spatio-temporal dynamics of a spatially-structured generalisa-
tion of the phytoplankton-zooplankton-fish larvae model system proposed earlier
(Biktashev, Brindley & Horwoord 2003, James, Pitchford & Brindley 2003). In
contrast to Pitchford and Brindley (2001), who were concerned with small scale
patchiness (i.e. 1–10 m), on which the (stochastic) raptorial behaviour of individual
larvae is important, we address here the much larger scale “patchy” problems (i.e.
10–100 km), on which both larvae and plankton may be regarded as passive tracers
of the fluid motion, dispersed and mixed by the turbulent diffusion processes. In
particular, we study the dependence of the fish recruitment on carrying capacities
of the plankton subsystem and on spatiotemporal evolution of that subsystem with
respect to the larvae hatching site(s). It is shown that the main features found both
in the non-structured and age-structured spatially uniform models are observed in
the spatially structured case, but that spatial effects can significantly modify the
overall quantitative outcome.

Spatial patterns in the metamorphosed fish distribution are a consequence of
quasi-local interaction of larvae with plankton, in which the dispersion of larvae
by large scale turbulent eddies plays little part due to the relatively short time
scale of the larvae development. As a result, in a strong phyto/zooplankton sub-
system, with fast reproduction rate and large carrying capacity of phytoplankton
and high conversion ratio of zooplankton, recruitment success depends only on the
localisation and timing of the hatching with respect to the plankton patches. In a
weak phyto/zooplankton system, with slow reproduction rate and small carrying
capacity of phytoplankton and low conversion ratio of zooplankton, the larvae may
significantly influence the evolution of the plankton patches, which may lead to
non-trivial cooperative effects between different patches of larvae. However, in this
case, recruitment is very low.
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1 Introduction

Zooplankton, broadly defined for our purpose as grazers of phytoplankton,
comprise a vital link between primary phytoplankton production and fish pop-
ulations. Most fish at larvae stage, and many in their adult form, feed on the
zooplankton grazers, typical examples being the North Sea cod and haddock,
whose larvae include the Calanus species as a staple part of their diet (Cush-
ing and Horwood, 1994; Heath and Gallego, 1998), and, at the other extreme,
the baleen whales of the Southern Ocean, whose main diet is krill (Miller and
Hampton, 1989). Zooplankton populations are also vital to the ”biological
pump”, carrying carbon to the deep ocean through skeletal sinking.

A striking feature of oceanic plankton distributions is their spatial variation in
population density (Bainbridge, 1957; Steele, 1978; Venrick, 1990). This patch-
iness is evident on all scales, sometimes related in an obvious way to physical
features of the fluid motion such as eddies or fronts (Abraham, 1998; Flierl
and Davis, 1993; Martin and Richards, 2001; McGillicuddy Jr and Robinson,
1997; Oschlies and Garçon, 1998; Strass, 1992), in other cases bearing no such
clear forcing mechanism. In these latter cases it is often presumed that biolog-
ical processes inherent to the population dynamics are important in producing
the patchy distributions (de Roos et al., 1998; Gurney and Veitch, 2000; Folt
and Burns, 1999). Observational evidence for the patchiness of phytoplank-
ton is abundant and relatively easy to obtain, e.g. by satellite imaging (Siegel
et al., 1999). Data on zooplankton distributions, vital for evaluating theoretical
modeling of the dynamics, are much scarcer and more elusive, depending on
direct measurement obtained from research cruise programmes (The PRIME
Community, 2001; Oschlies et al., 2000).

Growth of the zooplankton population is dependent on availability of phyto-
plankton to graze, and a number of simplified mathematical models of their
interrelated population dynamics have been proposed, e.g. (Steele and Hen-
derson, 1981, 1992a,b; Truscott and Brindley, 1994). Most have taken the
form of ODEs, representing only time evolution, but several have attempted
to model also the spatial variation of population, e.g. (Steele, 1978; Pitchford
and Brindley, 2001; Matthews and Brindley, 1997). Success has been limited,
and crucial tests for most of these models have yet to be defined and evaluated
against observation.

In this paper our concern is with the effects of spatio-temporal inhomogeneity
in larval food supply on the recruitment to adult states of fish larvae, and
in particular we wish to evaluate strategies for larvae distribution in space
or time which might optimize that recruitment. In contrast to Pitchford and
Brindley (2001), who were concerned with the effect of patchiness on such
small scales that the individual (stochastic) swimming of larvae was impor-
tant, we focus here on much larger space scales, on which turbulent “eddy
velocities”, represented in an eddy diffusion coefficient, are much larger than
any larval swimming velocities (Okubo, 1980). Thus we assume that phyto-
plankton, zooplankton and larvae are all carried passively by the large scale
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fluid velocity field. We consider a very simple plankton population model (Tr-
uscott and Brindley, 1994), coupled to a larvae evolution model (Cushing and
Horwood, 1994) and examine the extent to which various egg laying strategies
might exploit this system. To this end, we consider two sets of initial and
boundary conditions on the plankton distributions, each leading to a travel-
ling wavelike bloom, and carry out numerical experiments for various timings
and magnitudes of larvae hatching.

The results exhibit a strong dependence on the peak hatching rate, related
to the initial stock of larvae, the timing of hatching relative to the timing
of any plankton bloom, and, particularly, on the phytoplankton “carrying
capacity”, related of course to nutrient supply and strength of irradiation.
Recruitment shows a dramatic fall-off when this carrying capacity falls below
some “critical” value, whatever the size of the initial stock or the timing.
Dependence on the other parameters of the earlier plankton (Truscott and
Brindley) and recruitment (Cushing and Horwood) models is much milder; the
vital feature, perhaps unsurprisingly, is that a plankton bloom is triggered.

2 The model

2.1 Dynamic variables

Dynamic variables of the model are P , phytoplankton biomass concentration,
Z, zooplankton biomass concentration, N and B, larvae number and biomass
concentrations respectively, and F , the biomass concentration of the meta-
morphosed fish. All dynamic variables depend on time t and on one (x) or
two (x, y) spatial dimensions. The spatial domain was an interval x ∈ [0, xmax]
with xmax = 100 km in the 1D case, and a rectangle (x, y) ∈ [0, xmax]× [0, ymax]
with xmax = 100 km, ymax = 30 km in the 2D case. The larvae biomass was
chosen as a dynamic variable instead of the larvae average weight, to allow a
simplified description of the larvae diffusion. All the species, except the meta-
morphosed fish, were assumed to be diffusing in space. The main transport
process was assumed to be passive (turbulent) diffusion, which is therefore
taken equal for all three species. This assumption is appropriate for spatial
scales of ∼ 10 km or larger; for scales of, say, ∼ 10 m the swimming and rapto-
rial behaviour of individual larvae become important (Pitchford and Brindley,
2001) and the assumption of equal passive diffusion is inappropriate. Since
the average weight is an intensive characteristic it cannot be described by a
diffusion equation, so we used larvae biomass, which is an extensive character-
istic, and expressed the dynamic equations accordingly. Otherwise, the model
is identical to that used in Biktashev et al. (2003) and James et al. (2003), up
to a few insignificant computational details.

As is well known (Okubo, 1980), the effective diffusion coefficient in the sea,
due to the nature of turbulent diffusion, depends on the scale of phenomenon
considered. However, the model used in this study can be easily rescaled to
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an arbitrary diffusion coefficient, D, by a corresponding change of the spatial
scales (l ∝ D1/2), which means that the absolute value of the diffusion coef-
ficient does not have any major significance for the character of the results.
We used D = 0.864 km2/d = 105 cm2/s, which according to Okubo (1980),
corresponds to the scale of 10 km, i.e. consistent with the size of model area,
and agreeing with Talbot’s (Talbot, 1976) value for diffusivity in tidal areas.

2.2 Evolution equations

Phytoplankton dynamics are assumed to be logistic, with predation by the
zooplankton:

∂P/∂t = rPP (1− P/Pmax)−G(P )Z +D∇2P, (1)

where the grazing intensity G(P ) is Holling type 3:

G(P ) = rZP
2/(P 2

∗ + P 2). (2)

Zooplankton dynamics express the grazing of phytoplankton, and loss to non-
specific mortality and to the predation by the larvae:

∂Z/∂t = Z(γG(P )− µZ)−R(W,Z)N +D∇2Z, (3)

where R(W,Z) is the daily ration of an average larva. This ration cannot ex-
ceed the amount of zooplankton a larva can catch in one day. This amount
can be estimated by the volume that can be searched by a larva of weight W ,
which is empirically approximated as kW ν , times the density of the zooplank-
ton Z. On the other hand, the daily ration cannot exceed the larva’s metabolic
demand, calculated as a ratio of its energy needs, empirically WrL + σW n, of
which WrL represent maximal possible weight gain in a day and σW n energy
losses, over the efficiency of the food conversion, empirically (βmax − (βmax −
βmin) exp(−jW )). The actual ration is taken to be the lesser of the two,

R(W,Z) = min

(
kW νZ,

WrL + σW n

(βmax − (βmax − βmin) exp(−jW ))

)
, (4)

and the current average larva weight is calculated as

W = B/N, (5)

where B and N are biomass and number concentration of larvae per unit
volume.

The local dynamics of the average larva weight is given by the balance between
the benefit from its ration and the metabolic loss, thus its rate of change, W ′,

5



is given by

W ′ = R(W,Z)(βmax − (βmax − βmin) exp(−jW ))− σW n. (6)

The local dynamics of the larvae number concentration, apart from the hatch-
ing, which is assumed instant and simulated as initial conditions, always leads
to a loss, N ′, where

N ′=−N
[

µL
1 + bA

+ CS exp

(
−νSW

′

σW n

)

+CA θ
(
A− AT

∆A

)
+ CW θ

(
W −WT

∆W

) ]
, (7)

due to predation (the first term), starvation (the second term) and metamor-
phosis stipulated by the weight and age of the larvae (the third and the fourth
terms respectively). In (7), A is the age of the larvae, i.e. the time after the
hatching moment,

A = t− th, (8)

θ is the threshold function, defined as

θ(x) =
1

2
(1 + tanhx),

metamorphosis age and weight are AT ±∆A and WT ±∆W respectively, and
CA and CW determine corresponding maximum metamorphosis rates.

The local dynamics of larvae weight and number concentration are then in-
corporated into the spatiotemporal dynamics of the larvae concentration and
biomass concentration, to give

∂N/∂t=N ′ +D∇2N, (9)

∂B/∂t=NW ′ +WN ′ +D∇2B, (10)

which differs from the original (Cushing and Horwood, 1994) model by the
diffusion terms. These “reaction-diffusion” equations are written in this form
because the larval biomass is an extensive property, as opposed to the average
individual larva weight, which is intensive, and so its “diffusion” would not
make any sense.

The final dynamic variable, the biomass F , of the metamorphosed fish, was
calculated as a result of the process of metamorphosis, without any assump-
tions about its further dynamics and diffusion:

∂F/∂t = N
[
CAθ

(
A− AT

∆A

)
+ CW θ

(
W −WT

∆W

) ]
. (11)
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The initial and boundary conditions for this system of equations are explained
further where the results of the numerical experiments are presented. In terms
of final conditions, we are interested both in spatial distribution of the meta-
morphosed fish, i.e. F (tmax, x), and in total success of fish recruitment, defined
in terms of the total biomass of metamorphosed fish,

ΣF =
1

xmax

xmax∫
0

F (tmax, x) dx (12)

and similarly for two spatial dimensions. We divide the integral here by the
domain size xmax to get a quantity of the same dimensionality as in Cushing
and Horwood (1994), i.e. the biomass concentration.

Here we have taken no account of advection by larger scale oceanic processes,
but note that recent results (Neufeld et al., 2002) have indicated its potential
for enhancement and spread of initially localised blooms by oceanic stirring
processes.

2.3 Selected parameter sets

The default values of parameters, as well as standard initial values of the
dynamic variables, are specified in the tables in the Appendix. Of all the
parameters, in different experiments we varied three key parameters of the
phyto-zooplankton subsystem: rP , phytoplankton maximal growth rate; Pmax,
phytoplankton carrying capacity; and γ, zooplankton grazing efficiency. These
parameters differed significantly between Cushing and Horwood (1994) who
considered a relatively “strong” phyto-zooplankton system, and Truscott and
Brindley (1994), who considered a relatively “weak” phyto-zooplankton sys-
tem. We considered these two as extreme cases, and also two intermediate
cases, which we called “fair” and “modest”:

rP Pmax γ

Strong 1.0 3 · 106 0.15

Fair 0.7 1 · 106 0.12

Modest 0.5 5 · 105 0.10

Weak 0.3 1.08 · 105 0.05

2.4 Local behaviour

The analysis of the local (spatially uniform) behaviour of this model is con-
tained in our previous paper (Biktashev et al., 2003). The main findings can
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be briefly summarised as follows. As well as in the model without plankton
dynamics (Cushing and Horwood, 1994), recruitment tends to be a domed-
shaped function of initial fish egg production (stock), where the decrease of re-
cruitment at higher values of stock is due to depletion of the zooplankton pop-
ulation by larvae at an early stage. The recruitment at optimal stock strongly
depends on plankton conditions, and requires “phytoplankton bloom”; outside
the bloom conditions, the recruitments decreases exponentially. The timing
and duration of fish egg production is important in determining recruitment
through their impact on the phytoplankton bloom. Roughly, optimal timing
is when the end of larval stage is close to the end of the phytoplankton bloom,
if the duration of larval feeding is less than the duration of the phytoplank-
ton bloom. A nontrivial phenomenon was initiation of the bloom by hatching
larvae, via a temporal decrease of the zooplankton, triggering the prey-escape
mechanism. For more details, see (Biktashev et al., 2003).

3 Results

3.1 Two types of plankton waves, and organisation of the numerical experi-
ments

We have studied dependence of the success of fish recruitment on various fea-
tures of the spatio-temporal variability of the plankton community they feed
on. A simple example of this spatio-temporal variability was assumed to take
the form of a propagating “wave” of high zooplankton population following
the spring bloom of phytoplankton, and was considered to be supported by
two alternative mechanisms, the first of which we call an invasion wave, and
the second an excitation wave. These two waves are illustrated on Figure 1.

3.1.1 Invasion wave

See Figure 1(a). The initial condition takes phytoplankton at its maximum,
and no zooplankton or larvae:

P (x, 0) =Pmax,

Z(x, 0) = 0,

N(x, 0) = 0,

B(x, 0) = 0. (13)

Zooplankton invade this initial state, modelled by imposing a constant con-
centration of zooplankton at one of the boundaries:

Z(0, t) = Zb, (14)
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with non-flux boundary conditions in all other cases. There is some evidence
that such an invasion of the northern North Sea by copepod of the species
Calanus finmarchicus takes place when they emerge from a period of winter
diapause in the deep waters of the Celtic Channel. The value of Zb was typi-
cally chosen as 2 · 104; but its variation over a wide range did not lead to any
noticeable differences in the behaviour. The only important requirement for
this type of wave to occur was the complete absence of zooplankton in the
system at t = 0.

Behind the invasion wave, the local dynamics brings the system to the coex-
istence equilibrium between phyto and zooplankton. This wave is similar to
the classic KPP-Fisher (Kolmogoroff et al., 1937; Fisher, 1937) in that it is a
trigger wave from an unstable equilibrium to a stable equilibrium; however it
is more complicated as it involves two species, both of which diffuse.

3.1.2 Excitation wave

See Figure 1(b). Here, before the arrival of the wave, the system was in the
stable coexistence equilibrium between the phyto and zooplankton:

P (x, 0) =P0 > 0,

Z(x, 0) =Z0 > 0,

N(x, 0) = 0,

B(x, 0) = 0, (15)

where (P0, Z0) are a solution of the system

0 = rPP (1− P/Pmax)−G(P )Z,

0 =Z(γG(P )− µZ). (16)

The wave was initiated by imposing an influx of phytoplankton at one of the
boundaries, through the boundary condition

P (0, t) = Pb. (17)

with non-flux boundary conditions in all other cases. This may occur when
a local influx of nutrient by upwelling, or when a local increase in radiation
intensity, drives a local rapid increase in phytoplankton in the region x < 0.
The value of Pb was typically chosen to be 1.5 · 105, but its variation in a wide
range did not lead to any noticeable differences in the behaviour. In practice,
again, the exact initial and boundary conditions were not essential, as long
as both phyto and zooplankton species were present initially and had small
values, so that the phytoplankton bloom did not occur spontaneously, and
the boundary value of Pb was large enough to initiate such a bloom. In the
wave, the phytoplankton bloom happens through the prey escape mechanism,
discussed in detail in Truscott and Brindley (1994).
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Fig. 1. The two types of plankton waves. Shown are the time-space density plots
of (left panels) phytoplankton and (right panels) zooplankton. Space is horizontal,
total width 100 km. Time is vertical (bottom to top), ticks in every 10 days. White
is zero, black is maximum concentration. (a) Invasion wave. (b) Excitation wave.

These two types of wave are of course different idealisations of a complicated
natural phenomenon. We have considered both of them to check how robust
are the results.

Hatching of the larvae was simulated by imposing initial conditions for the
larvae variables at t = th:

N(th, x) =H(x),

B(th, x) =W0N(th, x),

H(x) =Ah exp

(
−
(
x− xh
wh

)2
)
, (18)

where xh was typically in the middle of the computation interval, xh =
0.5xmax, and the time th and amplitude Ah of hatching, and the width wh
of the hatching site were varied.

3.2 Dependence of recruitment on stock and time of hatching

The dependence of recruitment on stock, measured by the maximal hatching
concentration Ah and hatching time th, yields results for the “strong” plankton
parameters as presented in Figure 2. The recruitment success is relatively in-
sensitive to the hatching time, as long as hatching happens no sooner than the
zooplankton wave arrives at the hatching site. On the other hand, the recruit-
ment grows monotonically with increase in spawning stock, which corresponds
to the abundance of the zooplankton behind the zooplankton invasion front.
Only very late hatching (in the wake of the zooplankton wave) can make large
spawning stock counterproductive. This corresponds to the slight downturn
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Fig. 2. Larvae development in an invasion wave in strong plankton. Upper panel: the
stock-timing recruitment relationship: recruitment, i.e. the final overall metamor-
phosed fish biomass ΣF as function of hatching time th and stock, i.e. peak hatching
intensity Ah. The bullet point shows the maximum of recruitment. Lower panels:
the time-space density plots of (left to right): phytoplankton, zooplankton, larvae
biomass and metamorphosed fish biomass: evolution of the system corresponding
to the parameter choice designated by the bullet point on the above graph. Time
and space scales are as in Figure 1. The horizontal black and white stripes on the
lower panels on this and subsequent figures indicate time and place of the larvae
hatching; the spatial spread is defined as the interval (xh − wh, xh + wh).

of the recruitment at the point th = 300, Ah = 100 in Figure 2; this effect is
more pronounced in weaker plankton systems, discussed later. Note that larvae
hatching has no effect on the evolution of the phyto-zooplankton subsystem:
the zooplankton wave propagates as if without the larvae.
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3.3 Dependence on the strength of the plankton

We have performed a similar series of numerical experiments for the three
other sets of plankton parameters, “fair”, “modest” and “weak”.

In the “fair” plankton system, Figure 3, there is a definite advantage in spawn-
ing near the beginning of the zooplankton wave. The recruitment still generally
grows with the stock, but, for delayed hatching times, it is far from direct pro-
portionality, and is not even strictly monotonic. This means certain hardship
for the growing larvae, i.e. their growth is limited by the success of their graz-
ing rather than their natural growing capacity. The non-monotonicity of the
stock-recruitment curves at th = const corresponds to the Cushing-Horwood
effect, whereby larvae hatched at concentration above a certain critical value
eat up almost all food when young and leave too little for themselves later. An-
other new feature here is a significant effect of the larvae on the zooplankton
wave. For the situation shown on the figure, i.e. spawning near the begin-
ning of the zooplankton wave, the effect is seen as a temporary stop of the
zooplankton wave. The maximal recruitment success in this “fair” plankton
substrate is appoximately the same as in the strong plankton, but is achieved
in a narrower region of parameter values.

The back influence of larvae on the plankton is even more pronounced in the
“modest” plankton system, Figure 4. Here the larvae not only suspend propa-
gation of the zooplankton wave, but almost completely destroy that wave for
all the larvae development period. After larvae metamorphose, a new wave
of zooplankton emerges, propagating in two directions: the backward wave is
an excitation rather than invasion wave. Another new feature here is the bi-
modal spatial distribution of the metamorphosed fish. This is due to the same
Cushing-Horwood effect: the concentration of hatched larvae near the peak
of initial distribution is above the critical concentration, and so the stock-
recruitment dependence there is negative. In total, this severe intraspecific
competition noticeably decreases the success of fish recruitment, and makes
dependence on the parameters even sharper. The bimodal shape of the ‘crest’
of ΣF along Ah axis is due to the sharpness of the maximum of ΣF (th) depen-
dence and discrete sampling on the th axis.

Further decrease of the phyto-zooplankton vitality almost completely pre-
cludes any fish development, Figure 5. Here the larvae demand from the very
beginning exceeds the supply of the zooplankton, which leads to an almost
complete extinction of both the zooplankton and larvae at the hatching site.
The overall fish recruitment success in this case is microscopic, compared to
the previous cases.

3.4 Dependence on the type of plankton wave

To test the sensitivity of the effects to the exact mechanisms causing the
spatiotemporal variability of the zooplankton, we have repeated all the same
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Fig. 3. Same as Figure 2, for fair plankton

numerical experiments for the excitation, rather than invasion, waves. The
difference is that, in the excitation waves, the phytoplankton wave precedes
the zooplankton wave, whereas in the invasion waves the phytoplankton is
abundant everywhere ahead of the zooplankton wave. A quantitative differ-
ence is that an excitation wave propagates faster that an invasion wave in the
same system. These differences have proved to have little effect on the larvae
development, and the results of the numerics were quite similar to those in
invasion waves. We present only one illustration, for the “fair” plankton pa-
rameters, Figure 6. Apart from the profile and speed of the plankton wave,
the only noticeable difference is a later onset of favourable conditions for the
larvae, corresponding to a later arrival of the zooplankton wave, as it starts
only some time after the phytoplankton wave. Thus the difference is entirely
due to the artificial procedure of imposing the spatiotemporal variability.
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Fig. 4. Same as Figure 2, for modest plankton

3.5 Dependence on the size of the hatching site

Another set of numerical experiments was for a wider spatial distribution of
hatching, with wh = 20 km, as opposed to wh = 5 km as in the previous
numerics. As one would expect, the major difference in all cases was a wider
range of favourable hatching times, with approximately the same maximal
recruitment values. An example is shown on Figure 7, for “modest” plankton
parameters. One can see that the main characteristic features remain similar
to Figure 4: the sharp maximum of recruitment dependence on hatching time
(although it now comes later, especially at smaller hatching amplitudes, and
is less sharp), the tendency to bimodal distribution of the metamorphosed fish
(although the distribution itself is wider), and the decremental backward wave
of plankton from the hatching site (although now it is much slower).

The comparison of recruitment success with different geometries of the hatch-
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Fig. 5. Same as Figure 2, for weak plankton

ing distribution is more meaningful if we take a total hatching number,

ΣN =

xmax∫
0

N(th, x) dx, (19)

as a measure of the spawning stock, instead of the maximal hatching intensity
Ah. Using (18), this gives

ΣN =
√
πAhwh erf

(
xmax

2wh

)
. (20)

We present two examples of the dependences on the hatching width for con-
trolled hatching number: Figure 8, for ΣF (ΣN , wh), at a fixed th and “modest”
plankton parameters), and Figure 9, for ΣF (th, wh), at a fixed ΣN and “fair”
plankton parameters. One can see on both graphs that dependence on the
width is mainly monotonically growing, and only slightly decreasing at small
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Fig. 6. Same as Figure 3 (fair plankton), for an excitation rather than invasion wave.

hatching width, nearly optimal time and stronger plankton. This shows that,
generally, the dependence of larvae growth on the environment is so sharp that
the chance that some larvae would hatch somewhere in favourable conditions
is far more important than the number of larvae experiencing those conditions;
all the more so since high concentration of larvae may be counterproductive if
it exceeds the Cushing-Horwood critical value. This can be seen on the sam-
ple evolution plots on both Figures 8 and 9. In each case the parameters were
chosen to be slightly suboptimal and hatching was after the advent of the
zooplankton wave. In both cases the limiting factor for the larvae growth was
not only limited abundance of the zooplankton, but also an excessive intial
concentration of larvae in certain places, leading to their starvation later in
their development, and retarded metamorphosis with lower biomass.

An extensive search through the parameter space for all four plankton param-
eter sets and a 3-parameter grid of values of wh, th and ΣN , not presented
here to save space, has indicated that this behaviour is quite typical, and,
at a given total hatching number, the homogeneous distribution of hatching
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Fig. 7. Similar to Figure 4, but for a wider hatching area (wh = 20km).

intensity is either optimal or, at worst, slightly suboptimal.

3.6 Interaction of hatching cohorts via the plankton waves

In our model, hatching of larvae can trigger a wave of phytoplankton bloom via
a temporary reduction of the zooplankton. This can only happen in a relatively
weak phyto/zooplankton subsystem. Moreover, the increase in zooplankton
following the bloom is delayed in time and/or displaced with respect to the
hatching event that triggered it, and therefore is unlikely to be beneficial for
this particular batch of larvae. It can, however, be utilised by another batch
of larvae later in time and in another place, where and when the zooplankton
component of the wave initiated by the first batch arrives. To explore this
possibility, we have modified the larvae initial conditions (18) to the following:

N(thj + 0, x) =N(thj − 0, x) +Hj(x),
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Fig. 8. Recruitment biomass, as function of total hatching numbers (“stock”) ΣN

and width wh, for a selected hatching time, th = 140. “Modest” plankton parame-
ters. Lower panels: evolution of the system corresponding to the parameter choice
designated by the filled circle on the above graph.

B(thj + 0, x) =B(thj − 0, x) +W0Hj(x),

Hj(x) =Ahj exp

−(x− xhj
whj

)2
 ,

(j = 1, 2), (21)

i.e. as two similar events with different parameters, occurring at different times
0 ≤ th1 < th2. In (21), notations thj−0 and thj+0 stand for left and right limits
of the functions N(t) and B(t), i.e represent the time moments immediately
before and immediately after the moment thj, so the equations describe finite
jumps, of N by Hj and of B by W0Hj at the time moments th1 and th2. The
age of larvae was then measured relative to the latest hatching event,

A =

 t− th1, th1 < t < th2,

t− th2, t > th2.
(22)
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Fig. 9. Recruitment biomass, as function of hatching time th and width wh, for a
selected total hatching number, ΣN = 1240. “Fair” plankton parameters. Lower
panels: evolution of the system corresponding to the parameter choice designated
by the filled circle on the above graph.

Figure 10 illustrates the recruitment results for one series of such numerics.
There the width and amplitude of hatching were the same for both cohorts,
Ah = 100 N/m3 and wh = 3 km, the first cohort was located at xh1 = 30 km
and hatched at th1 = 10 d, and localisation xh2 and timing th2 of the hatching
of the second cohort varied. Thus the resulting graph of ΣF (xh2, th2) shows
clear traces of the wave triggered by the first cohort. The lower panels on
Figure 10 demonstrate that the first cohort of larvae has completely died out,
so the whole recruitment is from the second cohort, which shows mainly a
bimodal distribution typical for this relatively weak plankton distrubtion.

3.7 Evolution in two dimensions

Two-dimensional numerical experiments were performed in a rectangular do-
main (x, y) ∈ [0, xmax] × [0, ymax], similarly to those in 1D. The zooplankton
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Fig. 10. Recruitment biomass, as function of hatching time th2 and location xh2

of the second batch. “Fair” plankton parameters. Lower panels: evolution of the
system corresponding to the parameter choice designated by the filled circle on the
above graph. Note that the timescale here is different from other figures: the tics
on t axis are still in every 10 days.

invasion wave was initiated on the left boundary of the system, x = 0. To
make computations more interesting we set initial conditions for larvae in the
form of a few Gaussian batches:

N(th, x) = Ah
3∑
j=1

exp

(
−
(

(x− xhj)2 + (y − yhj)2

w2
h

))
. (23)

As opposed to 1D experiments, which we performed massively to reveal any
interesting features in dependences of recruitment upon various parameters,
2D experiments were performed more sparingly, to see if any new patterns
compared to the 1D case may occur. In a majority of situations, nothing
unexpected happened: recruitment pattern followed that of hatching, modulo
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availability of the zooplankton during the larvae growth.

Interesting events occur, as in 1D, when the plankton is so weak that the
larvae dynamics significantly affects it. In the 1D case, this led to a bimodal
pattern of metamorphosis after a unimodal pattern of hatching. An example
of the corresponding situation in 2D is illustrated in Figure 11, which was
obtained for {(xhj, yhj)} = {(20, 15), (50, 15), (80, 15)} (km), Ah = 100 N/m3,
wh = 5 km and th = 162 d, in zooplankton invasion wave in the “modest”
plankton subsystem.

One might suppose that this bimodal metamorphosis pattern in 1D is due to
diffusion-driven instability during the metamorphosis. However, this explana-
tion should have produced localised spots of metamorphosis in 2D, whereas
the observed patterns are different, “halo” type; see fig. 11. This suggests a
much more prosaic explanation, to do with the Cushing and Horwood (1994)
non-monotonic stock-recruitment dependence. That is, for a Gaussian hatch-
ing distribution, in the central region the larvae concentration may be too
large; they eat out all zooplankton before reaching metamorphosis, and thus
starve out. Far from the central region, they are too few in the beginning,
so there are few of them at metamorphosis. Only at some medium radii is
the initial larvae concentration close to the optimum, so producing substan-
tial larvae biomass at metamorphosis. This of course, to a certain extent, is
moderated by the diffusion.

The figure shows a numerical experiment with three hatching sites: ahead,
on the crest, and on the wake of the propagating wave of zooplankton prop-
agating into the abundant phytoplankton. The site ahead does not produce
anything as all larvae instantly starve out. The site on the crest of the zoo-
plankton wave produces a substantial number of larvae; this makes a “hole”
in the zooplankton distribution, which limits the following growth of larvae in
the centre of that site, thus leading to the halo pattern of metamorphosis. This
does not produce the phytoplankton bloom wave as the amount of phytoplank-
ton at the crest of the wave is not sufficient. The site on the wake produces a
smaller amount of larvae as the amount of zooplankton is much smaller. The
phyto/zooplankton system there is close to equilibrium, and so the consump-
tion of zooplankton by larvae leads to development of a phytoplankton bloom
followed by zooplankton growth, i.e. the excitation wave.

3.8 Comparative importance of parameters for the recruitment

To find out which of the three parameters rP , γ and Pmax has the most im-
portant effect on the observed difference in behaviour, we have studied de-
pendence of the maximal recruitment biomass ΣF on these parameters, in
different combinations. This was done for larvae development in the plankton
Fisher waves, such as those illustrated on Figures 2–5. For each combination
of the three parameters, we calculated the maximal possible recruitment for
the whole range of the hatching times th and intensities Ah.
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Fig. 11. Hatching in 3 sites in 2D propagating zooplankton invasion wave, leading
to a “halo” recruitment patterns. Time: bottom to top, snapshots with the interval
of 25 days, starting from day 25. Left column: phyto; middle column: zoo; right
column: larvae+metamorphosed fish biomass (normalised); white is 0, black is max.
The hatching time is th = 162. The dashed contrasting circles on the sixth row of
panels (t = 150) designate the hatching sites; the radius of the circles corresponds
to wh. “Modest” plankton parameters.

The results are summarised on Figure 12. It is clear that the major crucial
role belongs to the phytoplankton carrying capacity Pmax, which is no surprise
since in these series this parameter changed by a factor of 30 while the other
two remained within the same order of magnitude.

However, as is obvious from the graph Pmax = 3 · 106, a 30-fold increase
of the carrying capacity from the weak plankton of Truscott and Brindley
(1994) would be sufficient to produce the same recruitment as in Cushing and
Horwood (1994). Indeed, an increase from 1 · 105 to 5 · 105 already displays
enormous increase (×50) in recruitment, suggesting that the increase in Pmax
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Fig. 12. Recruitment biomass ΣF as function of rP , γ and Pmax, in the numerical
experiments as shown on Figures 2–5.

above some threshold level is the crucial factor in recruitment. This is all the
more striking if we recall that the recruitment here is the average over the
whole medium, rather than the maximal one.

It appears that the situation in the spatially structured model is different
from the spatially uniform model where all three parameters rP , Pmax and γ
are important in achieving high recruitment. In the 1D model, the average
recruitment, and especially its peak, depend strongly only on Pmax.

4 Discussion

The spatially structured model considered here has demonstrated some quali-
tatively new features, compared to the unstructured and age-structured mod-
els considered before (Biktashev et al., 2003).

The phytoplankton-zooplankton interaction in the spatially distributed Truscott-
Brindley model (in absence of larvae) is able to sustain propagating waves,
which may be considered as a simplest dynamic model of plankton patchiness.
As the larvae development is extremely sensitive to the copepod abundance,
the recruitment success depends on the localisation and timing of the hatch-
ing site with respect to such waves. The waves may be of different kinds; but
the exact mechanism of the waves is of little importance, only zooplankton
availability is of importance.
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A distinctive feature of the unstructured zooplankton-larvae model of Cushing
and Horwood (1994) was a bell-shaped dependence of the recruitment success
on spawning stock. Obviously, if very few larvae have spawned, only few of
them can reach maturity; on the other hand, too many larvae from the begin-
ning may exhaust the zooplankton availability before larvae reach maturity,
and so increase of stock then leads to decrease of recruitment. This feature was
more or less preserved from the unstructured model involving phytoplankton
dynamics (Biktashev et al., 2003). In the present study, however, we find that
if the size of the hatching site is less than the typical size of the zooplank-
ton patch (i.e. width of the zooplankton wave), and the plankton subsystem
is strong enough, then this inverse stock-recruitment dependence can be to
a considerable extent reduced, as the local exhaustion of the zooplankton at
the larvae site can be alleviated by diffusion of plankton from neighbouring
sites. In this situation, when the initial concentration of larvae is too high
to be supported by locally available plankton, the spatial distribution of the
larvae reaching the metamorphosed stage has distinct features: they tend to
concentrate on the edges of the hatching site, where the balance between the
larvae and zooplankton is optimal from the viewpoint of the unstructured
Cushing-Horwood mechanism because of the action of diffusion during the
larvae growth time. In our idealised 1-dimensional and 2-dimensional models
this was a sharp bimodal or annulus-shaped distribution, respectively; one can
expect in reality, with account of advection and environment inhomogeneity,
that the perfect circles may be deformed and the most robust feature would be
a stripe shape of the recruited fish distribution, on the edge of a zooplankton
patch.

When the phyto/zooplankton subsystem is relatively weak the larvae devel-
opment may influence the dynamics of the plankton subsystem. This feedback
can lead to new phenomena. One is that an appropriately timed hatching can
extinguish a whole zooplankton patch or temporarily stop a zooplankton wave
from propagating. Another effect is that, in the absence of the plankton wave,
hatching of larvae may itself initiate such a wave, through local and temporal
decrease of zooplankton grazing pressure on the phytoplankton, subsequently
triggering the phytoplankton bloom through a prey-escape mechanism.

A nontrivial consequence of the larvae-initiated plankton waves is the pos-
sibility of cooperative effects between different larvae batches. For instance,
the phyto/zooplankton wave initiated by a batch of spawned larvae, although
useless for this same batch, may be beneficial for another batch later in time
and in another place, where and when the zooplankton component of the wave
initiated by the first batch arrives. This possibility may influence the spawning
strategy of the fish.

The feasibility of any of the above conclusions depends, of course, on the
assumptions made in the model. In this study, we have mostly analysed just
four selected parameter sets, within the range consistent with data available
in the literature. Thus the possibility of a wider variety of phenomena that
may occur at other values of parameters cannot be excluded. Other features,
such as seasonal and geographical variations of the parameters, may also have
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significant effect. As noted in James et al. (2003), a phytoplankton bloom
initiated exclusively by larvae is unlikely; however, the effect of larvae may
enhance the effect of the season and quicken the onset of the phytoplankton
bloom; in this situation, cooperative effects between time- and space-separated
spawning batches may well take place.
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Oschlies, A., Garçon, V., 1998. Eddie-induced enhancement of primary pro-
ductivity in a model of the North Atlantic. Nature 398, 266–268.
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A Appendix: table of notations

Notation Std (init) val Units Meaning

Independent variables

t d time

x km space

y km space

Dynamic variables

P (t, x) 4 · 103 µg · N/m3 phytoplankton biomass con-
centration

Z(t, x) 4 · 103 µg · N/m3 zooplankton biomass concen-
tration

N(t, x) 1 N/m3 larva number per volume

A(t, x) 0 d larvae age

B(t, x) 1 N · µg/m3 larva biomass per volume

F (t, x) 0 N · µg/m3 metamorphosed fish biomass
per volume

Model parameters

Pmax 1.08 · 105 µg · N/m3 TB phytoplankton saturation
constant

rP 0.3 d−1 TB phytoplankton maximal
growth rate

rZ 0.7 d−1 TB zooplankton maximal
grazing rate

P∗ 5.7 · 103 µg · N/m3 TB zooplankton grazing half-
saturation constant

γ 0.05 TB zooplankton grazing effi-
ciency

µZ 0.012 d−1 TB zooplankton mortality and
predation rate
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Notation Std (init) val Units Meaning

k 0.0154 µg−ν CH larvae weight-search vol-
ume coefficient

ν 0.2234 CH larvae weight-search vol-
ume exponent

n 0.67 CH larvae weight-metabolic
cost exponent

rL 0.12 d−1 CH maximal larva growth rate

σ 2.6 µg1−n CH larvae weight-metabolic
cost coefficient

j 0.002 CH larvae maximal digestive
coefficient exponent

βmax 0.48 CH larvae max digestive coef-
ficient

βmin 0.135 CH larvae minimal (initial) di-
gestive coefficient

µL 0.089 d−1 CH larvae initial mortality to
predation rate

b 0.005 d−1 CH larvae mortality to preda-
tion decrease rate

CS 0.001 d−1 CH larvae starvation rate coef-
ficient

νS 1 CH larvae starvation rate ex-
ponent

AT 100 CH larvae metamorphosis age

CA 1 d−1 CH larvae metamph-age rate
coefficient

∆A 10 d CH larvae metamorphosis age
spread

WT 3165 µg CH larvae metamorphosis
weight

CW 1 d−1 CH larvae metamph-wgt rate
coefficient
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Notation Std (init) val Units Meaning

∆W 10 µg CH larvae metamorphosis
weight spread

Computation parameters

D 0.864 km2/d turbulent diffusivity

th 5 km hatching time

tmax 256 d total calculation time

ΣF 0 N · µg · km/m3 total hatching recruitment
biomass

xmax 100 km domain size

W0 33 µg initial larva weight

wh 5 km hatch zone width

xh 50 km hatch zone center

Ah 0 N/m3 hatch maximal intensity

th 128 d time of hatching

ΣN 0 N · km/m3 total hatching number

ymax 30 km domain size

yh various km hatch zone center

Auxiliary functions

G TB amount phyto eaten by zoo
per zoo µg per day

W µg CH average weight of individ-
ual larvae

R µg CH larvae ration per larvae
capita per day

H N/m3 local hatching intensity
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