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Abstract

We demonstrate and explain a wave-particle dualism of such classical macroscopic phenomena as spiral

waves in active media. That means although spiral waves appear as non-local processes involving the

whole medium, they respond to small perturbations as effectively localised entities. The dualism appears

as an emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves

response functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge

of the response functions allows quantitatively accurate prediction of the spiral wave drift due to small

perturbations of any nature, which makes them as fundamental characteristics for spiral waves as mass is

for the condensed matter.
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I. INTRODUCTION

Autowaves are nonlinear waves observed in spatially distributed media of physical, chemical,

and biological nature, when wave propagation is supported by a source of energy stored in the

medium. In a two-dimensional autowave medium there may exist autowave vortices appearing as

rotating spiral waves and thus acting as a sources of periodic waves. Their existence is not due

to singularities in the medium but is determined only by development from initial conditions. In

a slightly perturbed medium, e.g. spatially inhomogeneous, or subject to time-dependent external

forcing, a spiral wave drifts, i.e. its core location and frequency change with time.

The first direct experimental observation of spiral waves in a chemical oscillatory medium, the

Belousov-Zhabotinsky reaction [1], triggered a huge amount of interest and activity in the area.

Soon after that spiral waves were observed in a rabbit ventricular tissue [2], and later in a variety

of other spatially distributed active systems: in chick retina [3], colonies of social amoebae [4],

cytoplasm of single oöcytes [5], in the reaction of catalytic oxidation of carbon oxide [6], rusting

of the steel surface in acid with the air [7], in liquid crystal [8] and laser [9] systems. On a larger

scale, there are waves of infectious deseases traveling through biological populations [10, 11], and

spiral galaxies [12, 13].

A common feature of all these phenomena is that they can be mathematically described, with

various degrees of accuracy, by “reaction-diffusion” partial differential equations,

���������
	�����
���������
������ �����������! �"#�$�%�! �"�&'"#�)(+*-,.�
(1)

where
�/	102 ��34� is a column-vector of the reagent concentrations,

�5	6�7�
of the reaction rates,

�
is the

matrix of diffusion coefficients,
���$	����502 ��34� is some small perturbation and

02 �- �
is the vector

of coordinates on the plane. Since these are essentially nonlinear partial differential equations,

their spiral wave solutions in general case are studied numerically, while experimental study, for

obvious reasons, has been mostly using the Belousov-Zhabotinsky reaction medium. So the es-

tablished theory of spiral waves is mostly empirical and gives neither quantitative predictions nor

general understanding on how to control the spiral waves dynamics, which is important for practi-

cal applications.

As a model self-organizing structure, spiral wave demonstrates a remarkable stability, just

changing its rotational frequency and core location, i.e. drifting, in response to small perturba-

tions of the medium. The asymptotical theory of the spiral wave drift, proposed in [14] and shortly
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described below, is based on the idea of summation of elementary responses of the spiral wave

core position and rotation phase to elementary perturbations of different modalities and at dif-

ferent times and places. This is mathematically expressed in terms of the spiral wave response

functions (RFs) so that the spiral wave is insensitive to small perturbations in the region where its

RFs are equal to zero. As experimental data and computer simulations showed spiral waves in-

sensitivity to distant events, it was conjectured [15] that the RFs must decay quickly with distance

from the spiral wave core. In other words, spiral waves look like essentially nonlocalised objects

but behave as effectively localised particles.

FIG. 1: The “Achilles’s heel” of the spiral wave. Spiral wave, shown by vertical displacement of the

surface, and its response functions, shown by colour, in the complex Ginzburg-Landau equation (9) at

���������
	��
��� . Red, green and blue components represent the temporal RF ( ��� ) and � -real and � -
imaginary parts of the spatial RF ( ��� ), the gray colour outside the core is zero of all components of the

response functions.

Such wave-particle dualism has not been found in other macroscopic dissipative structures. To

stress the uniqueness of this feature of spiral waves, let us compare it with solitons. Solitons are

localised travelling solutions of certain nonlinear wave equations, and as such are often viewed as

both particle-like objects, as they are localised, and wave-like objects, as they are solution of wave

equations. One obvious difference from spiral waves is that solitons are observed in conservative

equations and do not preserve their identity under perturbations: a generic perturbation of a soliton

solution leads to a non-soliton solutions. For the present context more important is that the solitons

are, by definition, solutions that are essentially localised in space at every given moment in time.

This is different from spiral waves, which occupy the whole space, like e.g. photons of a fixed

frequency in quantum mechanics. In these terms, solitons both look and behave as localised,

particle-like objects, and the only wave-like feature is their origin from wave equations.
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To confirm the wave-particle dualism of the smooth dynamics of spiral waves the response

functions must be found explicitly and tried for quantitative prediction of the spiral wave drift due

to various small perturbations in some particular model medium. In this article we demonstrate this

using the Complex Ginzburg-Landau Equation (CGLE), which represents a typical self-oscillatory

medium.

A. The asymptotical theory of spiral waves dynamics.

A spiral wave solution to the system (1) has a form�� � � 	�� 	102�� 0� � ����	102	� 0� � 
�
�3 �
� � � (2)

where
� ���

are polar coordinates, vector
0� � 	��!��� � �

defines the spiral wave core location, and �
is initial rotation phase. For rigidly rotating spiral in the unperturbed system (1), at

� ���
,
0�

and� are constants.

A perturbation
��������

could be a slight inhomogeneity of the medium or an explicit time-

dependent external forcing. Typical effect of the perturbation is a slow change of previously

constant papameters
0�

and � , i.e. spatial and temporal drift of the spiral wave (the temporal drift

is the shift of the rotational frequency),

��� � ����� � 	 0� ��
�3 �
� � � ��� 0� � � 0� � 	 0� ��
�3 �
� ��� (3)

The last equation can also be written as
�.� � � ��� � 	 0� ��
�3 �
� � , where

��� 	 0� ��� 
! �	 0� ��"#��� � �
	 0� � �#�$

 �	 0� � ��" .

The drift velocities
��� � and

��� � , in the first approximation, are linear functionals of the per-

turbation. Both
� � and

� � , after sliding averaging over the spiral wave rotation period, can be

expressed as

�%$ 	 34���'&)( $+* �-,/.+0213
�546.+021 
87/9,;:=<8<>@? 7 �
02 & 4 ( $A1CBED@F $%G+� 	102H� 0� � ��� 	102H� 0� � 
�
I9 �
�EJ ���8K � (4)

where
F $

called the spiral wave response functions (RFs), L �M� ��NPO
are the critical eigenfunc-

tions �Q , F $ � �  R
 L F $.� L �S� ��NPOT�
(5)
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of the adjoint linearised operator:�Q , ��� � � 
�
/���7
 � � �� ��� ,��������
	���
����� � (6)

chosen to be biorthogonal � F�� 	�� � ����� 	�� ����� � �"! � �
(7)

to the Goldstone modes,� � � � 
 4 � �5� � 	102 ��34��� � �$# � 	R� 	102 � ����	102 ���
% � 	 � ��'& � � � O, &
( ( 1#� 	�� ��)! � " � � 	102 ��34�)� � O, &
( ( #+* ��,�)  � 4 � �$#.- � 	�� 	102 � ����	102 ���/% � 	 � �
(8)

which are the critical eigenfunctions,�Q � $ �S R
 L � $ � L �S� ��N O
of the linearised operator

�Q
: �Q �10�� � � 
/���7
 � � �� � � ������
	���
����� �

The additive ” � 
/�2� ” appears due to passing to the rotating frame of reference of the spiral wave,

so 3 � ��	102 ��


�3
is a polar angle in this frame of reference where the unperturbed spiral wave is

stationary. Note that the RFs do not depend on time, i.e. they are functions of the coordinates only,

in this frame of reference as well.

So the main point of the theory is the reduction of description of the smooth spiral waves

dynamics from the system of nonlinear partial differential equations (1) to the system of ordinary

differential equations (ODE) (3) describing the movement of the core of the spiral and the shift of

its rotational frequency, if the spiral wave response functions are known explicitly.

The “particle” side of spiral wave dynamics, the possibility of their description in terms of ODE

instead of original partial differential equations, has an important related aspect. An ODE descrip-

tion is used in the theory of meander, i.e. non-stationary rotation of spiral waves, which is possible

in some reaction-diffusion systems even in the absence of any perturbations [16–18]. The descrip-

tion of these complex motions turned from pure phenomenology to theory after the discovery that

the transition from stationary rotation to biperiodic meander happens as if it was a Hopf bifurcation

[19, 20]. A model ODE system describing the specifics of this bifurcation [21] revealed the role
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of the Euclidean symmetry of the unperturbed reaction-diffusion system in the plane. The explicit

decomposition of the reaction-diffusion system by this symmetry group [22] to the motion of the

tip of the spiral, and evolution of its shape, confirmed the ODE description of the motion of the

tip, but left aside the question of the origin of the low-dimensional behaviour of the spiral shape.

There were impressive attempts to build rigorous bifurcation-theoretic description of the shape

dynamics [23–27], where the low dimensional behaviour would be a natural consequence of the

finite dimensionality of the center manifold of the corresponding bifurcation. However, it has been

soon realised that a cornerstone assumption of this approach about the spectrum of the linearised

operator is surely invalid [28]. Thus, for now the low-dimensional behaviour of meandering spi-

rals remains unexplained. Formal combination of the low-dimensional description of meander

and of the perturbative dynamics of spiral waves gives predictions agreeing with direct numerical

simulations [29]. This indicates that the low-dimensional, particle-like behaviour of spirals due to

their internal dynamics, i.e. meander, and due to external perturbations, i.e. drift, may have similar

nature, and the localisation of response functions may be the missing link required for successful

completion of the theory of spiral wave meander.

II. SPIRAL WAVES AND RESPONSE FUNCTIONS IN THE CGLE

The perturbed Complex Ginzburg-Landau Equation is a two-component “reaction-diffusion”

system, which can be written in a vector form,

������� � � 	�O ����� �4� % � % � 
�	 O�
 ��� ������� 
�� �
(9)

where
�������  �

, � � � �  , � � �	 � � OO �

�

, and nonlinear operations defined accordingly[30].

It is a universal equation that describes any reaction-diffusion system in the vicinity of the

Andronov-Hopf bifurcation of the reaction kinetics. The steadily rotating spiral wave solutions

for the CGLE was studied by Hagan [31], and in the frame of reference rotating with the spiral

wave angular velocity



they have the form� 	R� � 3 ���S&
� ��� 	�� ���
(10)

Function
� 	R� �$��� 	�� ��& ��� 
 , � �� �

determining the shape of the spiral, the spiral wave asymptotic

wavenumber � , and rotational angular velocity



are solutions of the nonlinear boundary and
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eigenvalue problem,

	�O$
 ��� � � ��� � 
 O� ��� � O� � � � 
 * O � � 
 � 	 O ����� �/% � % � - � �S�.�
(11)� 	���� �5����� �
(12)� 	���� � ���	� O � � ��

��� 	 � � � 
�� 	�� �4�1	�� 
�� 	 O'� � �
(13)
 � � ��� � � � � � � (14)

Thus the shape of the spiral is defined by the real functions
� 	�� �

and � 	�� � found numerically and

illustrated on the fig. 2(a), for the model parameters � � �/���
, � � �

. The corresponding spiral

wave is illustrated on the fig. 2(b) (as
� � 	������ � ).

(a)

0

1

2

0 10 20

�
���! #"

$

�&%  #"

0

0.001

0 10 20

'
(

$

' % (

0

0.1

0 10 20

)*+
,

$

) % * %
+ % ,

(b) -�.0/ 121 .3/ 121465 7983: 8;828�<0= 83: 8;828�<0=>@? A�B0C B;D3E B3C B;F�GHJILK MONQP R9S3T S;S2S�U0V S0T S2WX Y[Z \^]Q_

FIG. 2: ( ��������� , � ��� ): (a) Functions ` 	Ja
�

defining the spiral wave b ; components c 	ed of the RFs

temporal mode ��� and components f 	eg 	eh 	ei of the RFs spatial mode � � , as functions of j . (b) The
k
-real components of the spiral wave ( b � ), of the temporal RF ( � � ), and of � -real and � -imaginary parts of

the spatial RF ( � � ), shown as density plots. The
k
-imaginary components are the same functions rotated

by l�m6n . Spatial region on this and subsequent figures is oqp 	Jrtsvuxw2y n ��	 n �{zO|xw2y n ��	 n �{z . The homogeneous

shades of the grey on the peripheries of � �
!
� correspond to zero, i.e. all the RFs are essentially localised

near the rotation center.

The spiral wave response functions in the CGLE, considered in the spiral corotating frame of

reference, depend on spatial coordinates in the following wayF $ 	�� � 3 ���S& 
 � 4 ( $ � �{} $ 	R� � � L �S� ��NPO��
(15)
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where functions
} $ 	�� �

satisfy the linear boundary value problems,

	�O ����� ��� }�� �$ 
 O� } �$ 
 	 �E�  L � �� � } $��

�� O/
 � 
 � �5��� , 	�O�
 ��� � 
 	�O � ��� ��& � ���	�
���
 } $ �'�/�

(16)% } $ 	�� � �5�
%�� � �
(17)} $ 	�� � � ��� � �
(18)

Here
 

is the imaginary unit,
�
 �

�	 O �� � O

�

is the operator of � -conjugation [30].

The spiral wave response functions localised in the vicinity of the spiral core correspond to the

solution
} $

of the system (16–18) exponentially decaying at
� � �

} $ 	R� � ��&�� , �
(19)

where � � � 	 � � � � � 	 � � � ��� is the root of the cubic equation

��� 
�� � 
�� �'� �
(20)� � , � � � O$
 � � 	�� 
 , � � ��� � �O�
 � � � �+� ��� � 	 � 
 � � 	 O � � � �O/
 � � �
(21)

with the negative real part closest to zero. We shall call this root the principal � .

The vector function
F
� is called the response functions temporal mode and has two real com-

ponents determining the drift of the spiral wave rotation phase due to perturbation of either of

two components of the vector
�

. The vector function
F
� is called the RFs spatial mode and has

two complex components describing the reaction of the spiral wave core location to perturbations,

and this reaction can be in two directions,
�

and
�
. Thus, corresponding functions

} $ 	�� �
can be

represented as
}
� � 	 ��
 �"! � 
 ��� 	 � � � � � (22)}
� � 	�# 
 � 0 

 %$ 

 ��& � 
 ��� 	 � � � � � (23)

where
� � ! �'# � 0 �'$ � & are real functions of one variable

�
, and

� �
�	 O�


�
is the unity vector.

The functions
� � ! �'# � 0 �'$ � & have been found numerically and, for the model parameters� � � �2�.� � � �

, are shown in fig. 2(a). It can be seen that the components of both temporal and

spatial modes of the RFs do decay quickly, being essentially non-zero only in the vicinity of the

spiral wave core. The reconstructed shape of the RFs in the
	 ��� � �

-plane is shown in fig. 2(b).
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FIG. 3: The explored region of o � 	��@s plane. Filled circles: parameter values for which the RFs have been

calculated. Squares: parameter values analysed in this chapter. Lines: � � � : degeneration of spiral;

g � � : transition from monotonic to oscillating RFs; � � � : the Eckhaus instability. Here � , � and g are

the coefficients and the discriminant of (21).

III. THE RFS DEPENDENCE ON THE MODEL PARAMETERS

As there is no general theorem guaranteeing the localisation property of the response functions,

it is important to understand how universal is it, and whether it will be observed typically, or only

at special values of the model parameters � and � . Since the Complex Ginzburg-Landau Equation

is invariant on the transformation ���� � � , ���� � � , � �
�
� , � �

�
� , its parametric portrait

is central symmetric in the
	 � � � � plane, so we considered only � * �

region without loss of

generality.

The explored region in the
	 � � � � parameter plane is shown in fig. 3, where the points mark

the values of � and � at which computations have been done and existence of localised RFs

confirmed. In the vicinity of the line � 
 � �'�
, the principal root � of the characteristic equation

(21) becomes very small, ��� � 	 � 
 � � � , while � is exponentially small in
	 � 
 � � , which makes

the computations especially difficult. This is why there are not so many explored points near by

the line. Calculations at larger � and � were not made, as at these parameter sets the spiral waves

are not stable [31, 32], and their slow dynamics does not make sense.

Point
	2�/���.�����

, illustrated above on fig. 1 and fig. 2, belongs to the region between the lines� �'�
and
0 �S�

and corresponds to the stable spiral wave with monotonically decaying response

functions.
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FIG. 4: The spiral wave and RFs at (a) � � ���/. , � � y ���10 : change of the winding of the spiral, (b) � � ���/. ,

� � ���/. : degeneration of the spiral with corresponding delocalisation of its response functions, (c) � � ����� ,
� ������� : oscillating response functions, (d) � �2. , � �3. : spiral wave and its response functions featuring

the ’halo’ after the Eckhaus instability line.

A. Change of the winding of spirals.

The sign of the spiral wave asymptotical wavenumber � changes crossing the line � 
 � �S�
.

This is why the winding of the spiral on the fig. 4(a) is opposite to that on the other four figures 2(b)

and 4(b)–(d), while the localisation property of the response functions does not depend on the

direction of the apparent rotation of the spiral.
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B. Delocalisation of the response functions for long asymptotic wavelengths.

Near the line � 
 � � �
the spiral wave asymptotic wavelength grows to infinity, and, at an

intermediate
�
, the spiral is logarithmic rather than Archimedean [31]. This is indeed seen on the

fig. 4(b). Following the terminology offered in [33], the CGLE becomes a quasi-gradient system

in the vicinity of the line � 
 � � �
, hence

�Q , � �Q
, and so here we may expect the RFs

F $
to become similar to the Goldstone modes

� $
. In this limit, in the region

O�� ��� � 4 � the

amplitude of
F
� remains approximately constant as well as that of

�
, while

F
� decays as

� 4 � .
This is consistent with the behaviour of

F $
seen on fig. 4(b).

C. Transition from monotonic to oscillating response functions.

The line, where the discriminant of the cubic equation (21) becomes equal to zero,
0 �

	 ��� �5� � 
 	 ����,�� � � �
, separates on the

	 � � � � plane spirals with monotonicly and oscillatory de-

caying response functions. Fig. 4(c) illustrates what is happening in the region with the oscillatory

decreasing RFs. The qualitative change in the behaviour of the RFs is strengthened by their more

slow decreasing, so the response functions in fig. 4(c) extend over the spiral first winding while

localisation of the monotonicly decaying RFs in fig. 2(b) and fig. 4(a) was almost entirely within

the very tip of the spiral.

Another new feature is the ‘halo’ especially well seen in fig. 4(d), i.e. the region around the

innermost core where the RFs have the opposite sign. It allows us to predict qualitative changes

in the spiral waves behaviour near the contrast inhomogeneities or due to the localised external

perturbations on the different sides of the line
0 �M�

in the parameter plane. For example, there

may occur a specific entrapment of the spiral waves near inhomogeneities of a special type. In

case of a smooth perturbation the difference in the spiral waves behaviour will not be seen.

D. The Eckhaus instability line.

The next special line in the parameter plane
	 � � � � is the Eckhaus instability line,� 	 � � � � � 	 � � � �4� � �

, where the asymptotically plane waves emanated by the spiral become ex-

ponentially unstable with respect to the long-wave longitudinal modulations. Precisely speaking,

after that line spiral waves in an infinite medium must be unstable as well. However, as seen in
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fig. 4(d), the response functions continue to preserve the localised character in that region, though

their spatial extension grows further.

IV. DRIFT OF SPIRAL WAVES

A. Resonant drift of spiral waves.

The spiral wave resonant drift was predicted for the first time in [34], then demonstrated in

an experiment with light-sensitive modification of the Belousov-Zhabotinsky reaction [35] and re-

cently reported in a thin layer of liquid crystal under rotating magnetic field [36]. The phenomenon

consists of the following: if parameters of the medium change periodically in time with the period

close to the spiral wave rotation period, then the spiral wave drifts along a circle of a large radius

or, if the two periods coincide, along a straight line. This has a very simple “physical” interpreta-

tion: if external perturbations occur at the same phase of the spiral wave, they cause its shifts in

the same direction, next shift parallel to the previous. Thus, the resonant drift is a consequence of

the symmetry and is universal for all spiral waves. The spiral wave resonant drift in the CGLE is

illustrated on fig. 5.

FIG. 5: Resonant drift of the spiral wave in the CGLE. � � ����� , � � � , medium size . � � | . � � s.u.,

perturbation amplitude � ����� � � . The thin “cycloidal” line — trajectory of the spiral tip � � o ���10
	 � s � , the

thick line — trajectory of the center � � o ��	 � s�� .

As the resonant drift of spiral waves is due to small but nonlocalised perturbation of the
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medium, it was crucial to try the RFs for the quantitative prediction of the drift velocity.

We consider time periodic external perturbation of the form

�$	 34���������'	�
�34� � �
(24)

where



is the own frequency of the unperturbed spiral wave.

Substitution of the perturbation (24) and the expressions (15) and (23) for the RFs in to (4)

together with the biorthogonality condition (7) gives the resonant drift velocity% ��� 0� % � � % � � % �
� �

��������
��
�
� 	�# ��& �	����� � � 	 0 
 $ �	��

� ��� �  � 	 # � & �	��
�� � 
 	 0 
 $ �	����� ��� � 7 �

, ��
�
� � &'� � 	 � � # 
 � � � 0�� 

 �	 �20 

� 	 � � $�
 � � � & �4� � 7 �

�������� � (25)

Thus, for known Hagan spiral wave solution
� � � and components of the spatial response function# � 0 �'$ � & , formula (25) gives theoretical prediction for the resonant drift velocity. At � � �/���

and � �'�
it gives the normalised drift velocity

% � � 0� % � �/� % � � % � , ��� � , � .

To compare the prediction with drift velocities obtained from computer simulations, direct

computer experiments were made using the CGLE (9) with the perturbation (24) of the amplitude
�

up to 0.1. The particular details of the experiment can be found in [37]. In an agreement

with the theory, the resonant drift velocity was approximately proportional to the perturbation

amplitude
�
. In fact, this proportionality is obeyed quite well even for

��� �/� � �
, while at this

amplitude the drifting spiral wave is considerably deformed, see fig. 5, and due to the deformation

the perturbation theory should not be valid. This is because the deformation is due to the relative

motion (“autowave Doppler effect” [38]), which affects the periphery of the spiral, whereas the

velocity of the drift is determined by the events in the core, where the response functions are

nonzero and the spiral wave deformation due to the Doppler effect is not significant yet at this

perturbation amplitude.

The normalised “experimental” drift velocity obtained from the direct computer simulations at
��� �/� � O

was
% ��� 0� % � � � , ����� � �

, i.e. just
� ��� difference from the theoretical prediction. The

crucial parameter limiting the convergence of the experimental drift velocity to the theoretical

prediction was the spatial discretisation step of the numerical simulations, as its reducing leads to

a necessity of significant computational resources. We showed in [37], that the prediction of the

asymptotical theory agrees with the results of the direct numerical simulations, up to the precision

achievable by these simulations.
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B. Inhomogeneity-induced drift of spiral waves.

If the perturbation does not depend on time explicitly and explicitly depends on the spatial

coordinates, i.e. there is a system with spatially inhomogeneous properties

�/	6���502 ��34�����/	6���502 � � (26)

then spiral waves drift as well. The dependence on the spatial coordinates in the laboratory frame

of reference leads to a periodical dependence on time in the frame of reference rotating with the

spiral wave. As the perturbation is synchronous with the rotation, the resonance conditions are

fulfilled automatically.

Spiral wave drift due to media inhomogeneities is well known: it was studied in numerical

simulations [39] and then in the experiments with the heart tissue [40, 41] and in the Belousov-

Zhabotinsky reaction [42]. Attempts to explain or predict the direction and velocity of the drift

have been made [39, 43–45], but they were based on various phenomenological arguments appli-

cable to narrow classes of autowave media with special properties, while the response functions

method allows to predict the spiral wave drift velocity due to weak media inhomogeneities without

any restrictions on the type of inhomogeneity.

Below we consider drift of the spiral waves in the CGLE caused by two different types of

inhomogeneity of the model parameters. The first inhomogeneity is defined by perturbation

��� � ��% � % ��� (27)

corresponding to the gradient of the coefficient of nonlinear dispersion � ,
�� 	102 ��� � 
 �9� .

The second inhomogeneity is due to the gradient of the frequency of synchronous oscillations

of the medium defined by the perturbation

��� � � �I� (28)

Without any restriction of generality, it is enough to consider the cases, when the spiral wave

rotation center has the coordinate
� � �

; otherwise it is sufficient just to move the frame of

reference and to consider the problem with the correspondingly changed parameter � .

Formally speaking, in infinite media, the asymptotical theory was developed for, both pertur-

bations (27) and (28) are not small, as for big enough
�

and any small parameter
�

the product
���

will be finite and arbitrarily large. But due to effective localisation of the response functions, just

perturbation in some finite vicinity of the spiral core is essential.
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Following the perturbation theory, in the first order on
�

the function
�/	102 ��34� in (27) and (28) is

changed onto the unperturbed spiral wave
�

of (10), so both perturbations (27) and (28) may be

written in the form:
��� ����� � 	 3 � 
�3 
 � � � &
� 
 ��, � 
 , � � � $ 	�� � � (29)

where L � �
for (27) and L � O

for (28).

Substitution of the perturbation (29) and the expressions for the response functions (15) and

(23) into (4), with taking into account normalisation (7), gives the drift velocity:

��� 0� �-����	�� 

 � ��� � ��
�
� 0 �  & � � $ � � 7 �

��
�
� � &'� � 	 � � # 
 � � � 0�� 
  �	 �20 

� 	 � � $ 
 � � � & �4� � 7 � � (30)

where convergence of the integrals over the whole plane, despite of the growing factor
� �

, is

provided by the exponential decay of the spatial RFs components
# � 0 �'$

and & .

C. Drift due to gradient of the coefficient of nonlinear dispersion.

For the stable spiral wave with the monotonicly decaying response functions, at � ���/�-O�� � ��/���
, prediction (30), L � �

, gives components of the normalised drift velocity equal to
� ��� � � �� OT��� ��� ������� � � � � , �/� O � � .

To check the prediction, the CGLE (9) was numerically solved with the perturbation (27) of

amplitude
� � O+� 4��

. The details of the numerical simulations are fully described in [46]. The

components of the normalised drift velocity measured in the direct numerical simulations were
����� � � � � OT���5, � � ����� � � � � ,�� � � � , so the difference from the theoretical values was less than

2%. Thus, for the spiral wave drift caused by this type of inhomogeneity of the medium the

asymptotic theory prediction is in a very good quantitative agreement with the results of direct

numerical simulations.

D. Drift due to the gradient of the linear frequency.

The inhomogeneity (28) was chosen to compare predictions given by (30) with the results ob-

tained by another method essentially using linearity of the perturbation and the special properties

of the CGLE [45].
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We calculated functions
� � � determining spiral wave and components of the spatial RFs,# � 0 �'$ � & , for parameter � in the interval

� � O���� � at fixed � � � O . This interval crosses the

Eckhaus instability line at � � � � � � so that its beginning is before the line and corresponds to a

stable spiral, while the end is quite beyond the line and corresponds to an unstable spiral.

On the interval
��� � �S� ���

, the drift velocities calculated using (30), L � O
, are indistinguish-

able [46] from the results of [45]. For
�/����� � �MO

there were no experimental results published,

as it is difficult to make numerical simulations in this particular region of parameters due to Eck-

haus instability of the spiral, while from prediction (30), L ��O
, follows that

� ���
changes the sign

at � � � � ��� � . This example shows the qualitative advantage of using the response functions to

predict the spiral wave drift velocity over numerical simulations.

V. CONCLUSION

A spiral wave is a macroscopic process of self-organisation that potentially involves the whole

medium. The medium affected by a spiral wave splits roughly onto two unequal parts: the core

of the spiral and the periphery. A small perturbation of the core can affect the rotational phase

and location of the centre of the spiral, and information about that is subsequently propagated

throughout the medium and eventually leads to the shift in space of the whole pattern, however

large the medium can be. In contrast, small perturbations outside the core can only have local and

temporal effect, as they are over-ridden by signals from the core. The result of that separation of

functions between the different parts of the medium is the classical (non-quantum) wave-particle

dualism, when the spiral wave affects the medium as a delocalised, wave-like entity, and is affected

by any applied forcing as a localised, particle-like object. Mathematically this is expressed by a

peculiar localisation property of the spiral wave response functions.

For the model oscillatory medium described by the complex Ginzburg-Landau equation, we

have demonstrated that the spiral wave response functions essentially differ from zero only in the

very vicinity of the spiral wave core for all sets of the model parameters stable spiral waves exist

for. The analysis of the response functions can identify the qualitative changes in the particle-like

behaviour of the spirals. So, approaching to the special regions in the parameter plane, such as the

region of absolutely unstable spirals or the quasi-gradient line, is accompanied by characteristic

changes in the shape of the RFs. This correlation may be used to predict and explain new qual-

itative features in the smooth dynamics of spiral waves. Of the most importance is the response
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functions universal ability to make quantitative predictions of the spiral wave drift due to small

perturbations of any nature, which makes the RFs as fundamental characteristics for spiral waves

as mass is for the condensed matter.

Thus, the spiral waves ’wave-particle’ dualism explains their drift due to weak perturbations of

the medium, provides a key for understanding more complicated motions of spiral waves, and gives

new ideas on how to control the process. The latter is vitally important for practical applications

of the theory of spiral waves.
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