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Movement of excitation waves in active media in some cases can be
described by a kinematic approach in terms of movement of curves,
the wave crests, by neglecting other details such as wave profile
and refractoriness. Of special interest are broken waves, e.g. spiral
waves. In this case, additional equations for the wave tip move-
ment are required. We derive such equations by singular perturba-
tion techniques. These equations differ from those proposed earlier
from semi-phenomenological arguments [10,11], are more compli-
cated and diverse and admit a broader variety of solutions. As an
illustration, we apply these equations to the problem of a stationary
rotating spiral wave. In this particular example, the ‘traditional’
equations have happened to be a special case.

1 Introduction

Waves of propagating excitation are observed in active media of physical,
chemical and biological origin [1-5]. The simplest solution to the underly-
ing system of equations, usually of the reaction-diffusion type, is a solitary
propagating pulse. Autowave media are characterised by all-or-none nature of
these waves or at least a discrete spectrum of their amplitude and profile, as
these parameters are determined by the balance between energy income and
dissipation.

The first nontrivial two-dimensional generalisation of the solitary one-dimensional
pulse, after the solitary plane wave, is a smoothly curved wave, which in every
small domain looks like a solitary plane wave propagating in some direction.
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The local propagation velocity of such a wave differs from that of the corre-
sponding plane wave for various reasons, the most important of which is the
wave curvature. The dependence of wave velocity on its curvature (usually, in
a linear approximation) delivers closed equations of motion of its front or crest
line, which constitutes the essence of the kinematic approach [7,10,11]. The
term ‘kinematic description’ was introduced to stress the fact that all the un-
derlying physics has been concentrated in a few phenomenological constants,
defining the dependence of the velocity on the curvature, whereafter the pre-
diction of the movement of the wave becomes a purely geometric problem in
space-time. The curvature-velocity dependence can be obtained by singular
perturbation techniques, starting from the solution of steadily propagating
pulse [6,7]. In some circumstances this may not be enough, as it is the case
for the Kuramoto-Sivashinsky equation [7,8], where inverse dependence of ve-
locity on curvature requires account of higher derivatives of curvature along
the wave.

A more complicated 2D pattern is a broken wave. The most important case
of such structures are rotating spiral waves of excitation, observed in many
autowave media [1-5], and are of significant practical interest in cardiac mus-
cle [9], where they underlie dangerous pathologies like tachyarrhythmias and
fibrillation. If the waves are rare, so that next wave does not feel the traces of
the previous one that propagated through the same point, and slightly curved,
then the crest line of the wave can be defined, which is now not a closed line or
line ending on medium boundaries, but has an end or ‘tip’ inside the medium. 2
This line crosses a region with the boundary, drawn by the tip. In this region,
motion of the crest line can be described by the kinematic equations. These
equations now require boundary conditions at the tip trajectory, and some
more conditions are required to determine the trajectory itself, i.e. the move-
ment of the tip. Both types of equations relate geometry and motion of the
crest line near the tip, and we shall call both wave tip motion equations.

The ‘classical” kinematic approach, developed by Davydov, Mikhailov, Zykov
et al. [10,11], is based on the following main equations:

V(s,t)=V. — DK(s,1) (1)
&:Ko == —Goas]{() (3)

where the wave form is described in terms of time ¢ and arclength s measured
from the wave tip, V(s,t) and G(s,t) are normal and tangential components of

2 We use the term crest line, not front line, to avoid confusion with the close,
but distinct ‘eikonal-curvature’ approach or Fife limit [12-14], which describes the
broken excitation wave by two curves, its front and back, with their junction being
the wave tip.



wave velocity, K (s,1) is crest line curvature, and subscript 0 refers to the value
at the tip, i.e. at s = 0. Constants D, V., v and K. are medium parameters
(more formal definitions will be given below).

Equation (1) is well known in many areas of physics, e.g. in flame propaga-
tion and crystal growth (see references in [13]), and for excitation pulses in
reaction-diffusion systems it has been derived e.g. by Kuramoto [7]. Equation
(2) has been first proposed from phenomenological considerations; in [10,11]
it has been substantiated by perturbation technique similar to that used by
Kuramoto [7], starting from the solution in the form of a broken plane wave
propagating steadily and in the direction orthogonal to itself, and neglecting,
at some stage, the curvature variations along the wave. The last equation in
this system, (3), is the weakest basis of the existing theory; as in [11], it is in
fact an arbitrary suggestion introduced to close the system of equations. In
the stationary case, equation (3) can be satisfied in two different ways; usually
it was assumed that

Go = 0. (4)

These equations, together with definition of geometrical quantities involved,
constitute a well posed ‘kinematic’ problem, where all underlying physics is
concentrated in a few coefficients. This theory and its generalization to curved
surfaces, to inhomogeneous, refractory and nonstationary media and to three
dimensions has been used to analyse the dynamics of spiral and scroll waves.
A recent review of the results can be found in [11].

In this paper, we discard the simplification and arbitrary suggestion men-
tioned above, and derive the motion equations for the wave tip consistently
by singular perturbation techniques using generic assumptions (Section 2).
The resulting equations of the wave tip have proved more complicated and
diverse than the traditional ones (2, 3). As an example, we apply the new
equations to the problem of a stationary spiral wave (Section 3). In this sim-
plest nontrivial problem, the traditional equations have proved to be a special
case, giving a unique solution while, in general, there may be many, and dif-
ferent asymptotical magnitudes of certain characteristic quantities. The last
section is devoted to the discussion of most interesting physical consequences
and further directions.

2 Derivation of the wave tip motion equations

We consider a reaction-diffusion system in the plane,



O = DAw + f(u) + 6 f(u), (5)

where v € R!, [ > 2 is a column-vector of state variables, f + 6f € R!
describes local kinetics, D is an [ x [ matrix of diffusion coefficients and A is
the two-dimensional Laplacian operator. For a chemical excitable medium, u
are concentrations of reagents and f + ¢ f reaction rates; for cardiac muscle u
are transmembrane voltage, ionic concentrations and gating variables.

System (5) is obtained as a perturbation of a special system,

du=DAu+ f(u), §f=¢cfi, e<l, (6)

that belongs to Winfree’s ‘rotor boundary’ dR [15] in the parametric space.
Near this boundary, the rotation period and core diameter of the spiral wave
become very large, and we assume that at the boundary, a stationary propa-
gating broken wave solution wu, exists. Denoting normal (propagation) velocity
by v, and sideward (‘growth’) velocity by g., this hypothetical solution can
be defined as

The coordinate n = y — g.t is chosen so that the broken wave is at > 0. The
form (7) is the generic form of a stationary propagating broken wave solution
taking account of the translational symmetry of the reaction-diffusion system.
That it is not an arbitrary two-dimensional solution breaking the translational
symmetry, but specifically the broken wave, is given by the requirements that

(&) = uo, & — oo, (9)

i.e. far from the tip, the broken wave u.(£,n) becomes a plane wave, with the

profile of a solitary pulse u,(¢) propagating through resting state ug. Then the
perturbed system (5) also has a plane wave solution,

u(z,y,t) = Uz — Vit), (10)
with a profile U, and a velocity V; close to u, and v,.

We are interested in solutions of (5) in the form of the broken wave, slightly
perturbed and smoothly curved. Let us introduce the coordinate system (s, ¢)
related to the crest line (see Fig. 1(a)):

r = R(s,1) + gN(s,1), (11)



where R(s, 1) is the crest line equation, N(s,t) is the unit normal and s is the
arclength measured from the tip.

Fig. 1. Kinematic description of motion of the crest line. (a) The curvilinear coor-
dinates related to the crest line shown by the bold line. O is the origin, B — the
wave break point (tip), C — a point on the crest-line at the distance s from the
tip, R — its radius-vector, T and N — tangent and normal unit vectors, P — a
point in the plane at the distance ¢ from C in the directin of N, r its radius-vector.
Thus, s and ¢ are the curvilinear coordinates of the point P. (o) Velocities related
to the moving crest-line. Solid bold line is the position of the crest at the previous
moment, ¢, and the dashed bold line at the next moment, ¢ = ¢ + d¢. The point
C with chosen coordinate s has shifted to C’ with the velocity V normal to the
crest-line and GG along the crest-line, and orientation of the crest-line at that point

has turned by the angle da = (w 4+ GK)dt.

Then the required solution is
u(s,q,t) = u(s,q) + 6u(s,q,t), ou= euy. (12)

Now we transform (5) into the coordinate system (11), and perform the sub-
stitution (12). Linear approximation in éu yields

dyuy = Luy + h(s,q, 1) (13)

where the time-independent linear operator L is



(B); = (01i/ 0us)umue (5.0 (15)

The translational symmetry of (5) means that L has two null-eigenfunctions

U, = d,u.(q,s), Uy =du.qs), LU =LU,=0, (16)

and far from the tip, the perturbed solution approaches the plane wave, so

Ui(s,q) = ®1(q) = Dyua(q), s — Fo0,
Uy(s,q)—0, s— —o0,
®1(q) =0, ¢— oo,
Uy(s,q)—0, s— too,
Uy(s,q)—0, ¢q— too, (17)

In what follows, we shall assume that these limits are approached rapidly
enough.

We introduce the following notations for local crest line-related quantities
(see also Fig. 1(b)): T = J;R for unit tangent, K = —d,T - N for local
curvature, V = d;R - N for normal velocity, G = d;R - T for tangent velocity
and w = —0;N - T for angular velocity. It is easily seen that

w=0,V - GK. (18)

We expect to find solutions depending on the small parameter ¢ not only
through (12) but also via the shape of the crest line. This dependence may be
different in different situations. To facilitate calculations, however, we stick to
a certain dependence, which will later prove to be a self-consistent assumption
in some cases, and still lead to correct consequences, if expressed in original
variables, in other cases (including the special case corresponding to the ‘tra-
ditional’” equations). Namely, we assume that

K=¢cK,
W = €wq
V—v.=eV}
G — g, =Gy (19)

where the quantities with subscript 1 are supposed to remain finite in the
limit ¢ — 0. A more generic and accurate approach would consider each of



these quantities as an independent small parameter; however, this would only
enlarge the formulae and yet lead to the same results.

In a linear approximation in ¢, the free term A in (13) is

h(S, Qat) = [Gl —q (g*](l + 831(1],j + wl)] \112 +
+ (Vi + KiD) Wy — 20K, D0, 0, + fi(u.) + O (e) (20)

Let us define the two-dimensional inner product,

(u,v) = //u(s,q)v(s,q)dqu. (21)

Then the conditions of solvability of (13) with respect to u; are

(h, W) =0, j=12, (22)

where W', ¥? are the null-eigenfunctions of the adjoint operator IA_;+,
LHut2=0, (U, 0)=0,i#j, (0,0)=1 (23)

We assume without proof, that asymptotic behaviour of U'?(s, ¢) at large s
is analogous to (17), i.e.

Ul(s,q) = ®'(q) s — +oc,
Ul(s,q)—0, s— —o0,
®'(q)—0, ¢ — oo,
U¥(s,q)—0, s— too,
U%(s,q)—0, q— +oo, (24)

Now, we come to the key point in the derivation. Let us consider equation
(22) for j = 1:

<Klg*qq’2 + QCJKJA)as\I’Q + wiqW¥; + qas[(lf)q;% \I’1> -
— (Vi + KaD) Wy + fi(u), ¥') =0 () (25)

It contains two singular integrals. Convergence of the first one is provided by
the decay of W, (17) and the boundedness of other factors. On the contrary,



convergence of the second one is not guaranteed by any of the assumptions
made so far. So, to satisfy Eq. (25), we should first provide the convergence
of this integral, which requires that the integrand vanishes at large s. This re-
quirement leads immediately to the classical wave motion equation (1), where

V.=v. —c(F, 1) (31, 0")
1

D=(D®;,0")(0,,0")
Fy=lim fi(u.) (26)

and the parentheses (-,-) denote one-dimensional inner products,

(u,v)(s) = /u(s,q)v(s,q)dq. (27)

With (1), (26) satisfied, both integrals in (25) converge and we may further
require that their sum vanishes. This leads to another equation, now for the

tip:
(.01(0, t) = )\0 — /\1[{1(0, t) — )\2831(1(0, t) + O (6) . (28)

where

o= KFl vl @1%> +(filw) - R, qﬂ>] (¢02,0") (20)

-1

M =g.+2 <qf)88\1127 \I’1> <q\112, \I’l>
_ l<f) (T — 1), 0") + <15<1>1, yl @1%>] (g2, ") (30)
Ao = (qDTs, ') (Ts, 01) (31)

Note, that we now have obtained two motion equations, one for the crest line
(1) and one for the tip (28), out of single equation (25).

Equation (22) at j = 2 also contains singular integrals, but their convergence
is already guaranteed by (17) and (24). So, this equation leads to just one
more condition,

Gl((), t) = Ho + ,ulKl((), t) + ﬂgasl(l(o, t) + O (6) 5 (32)

where



e 0B )]

—(fi(w),9%) (33)
=— (DU, ¥?%) +2 <qf)85\112, 02— Q1M> +

<q\I]2’\Ill>
<q\112, Ve 1 2 1 1 (U, 01) .
T l<D (U — @), ')+ <D<I>1,\II ) WH (34)
fly = <qu1;2, P2 %wl> (35)

Equations (28) and (32) give the required system of equations at the wave
tip and supplement the wave motion equation (1). In this system, boundary
conditions for K(s,t) and equations of the tip motion are mixed together.
With help of (18), it can be rewritten in an equivalent form?

0=Xo+ (D — X)) K] + (g« + epio — M) K4
e(py — X3)Ki 4+ e(pg — \) K1 K| — s KIP + O ( )
wi=Xo — MK1 = MK — eAs K} — e\ K1 K] — eAs K2+ 0 (€)
Gy = pto + p1 K1 + 120, K1 + O (€), (36)

In original variables this is

0=eXo+ (D= X)K'+ (g + €0 — MK
+(p = A)E? + (1 = M)KK' = MK 4 0 (&)
—edo = ME — MK —MK?2 = MKK' —)MK?+0 (63)
G:g*—l—cpo—l—,ul[(—l—m]('—l—O(e ) (37)

where functions K, K', G and w are assumed to have arguments (0,¢). Here
the first equation is the boundary condition for the evolution of K (s,t), and
the two others determine the motion of the tip given the evolution of K(s,1).

In these equations, we have retained terms of different asymptotical orders in
€, to keep within the scope the traditional equations (2), (3). Equation (2) can
be considered as a special case of (32) at py = 0. Equation (28) is new, and is
to replace the traditional equation (3), which does not fit to the new system at
all, or requires too many assumptions to have sense. However, the stationary
versions of the motion equations are comparable, and will be compared the
next section and in Discussion.

3 Here we include higher-order terms with coefficients A45 which can be obtained
in the next order of the same perturbation technique



3 The stationary spiral wave
3.1  Problem formulation and general solution.

A stationary spiral wave rotates rigidly around a fixed point, and its tip de-
scribes a circle, called the core of the spiral, centered at that point. The rigid
rotation means that the shape of the wave remains constant and only its po-
sition on the plane changes, so K and (& do not depend on ¢. In this case, the
wave evolution equation (1) can be transformed to an integro-differential one

[10,11],

—-G(0) + /S[((sl) (Vi — DK(s1))ds;| — DK'(s) = w (38)

0

K(s)

where w is now the constant angular velocity of the whole spiral; for definite-
ness we consider only spirals rotating counter-clockwise, so that increasing s
means moving from left to right with respect to propagation direction, and
w > 0.

The boundary conditions of (38) at s = 0 are (37), and at infinity

K(+0o0) = 40. (39)
Make a change of variables,
s=DV 'o,
K(s)=V.D y(o),
w=VD'Q. (40)

We are interested in solutions with K, and hence y, small. Transformation of
equation (38) to an ODE and substitution (40) lead to the following equation:

' —y? = ' — =0 (v (41)

where prime ’ denotes differentiation by the new independent variable o, with
boundary conditions

0=evo+ (1 =)y + (v3—11)y
v = ve)y? + (vs — vy’ — vy + 0 (&), o =0,

10



Q=cvy— 1y —ny — V6y2 — vryy' — Vs‘ylz +0 (63> ’ o=0, (42)
y — 40, o — +oo, (43)

This poses a nonlinear eigenvalue problem for eigenvalue € and function y(o).
Here the dimensionless medium parameters are defined as

Vg = )\0DV;_2, V= )\1‘/*_1, Vo = )\QD_l,
vs = (g« + o)V, v = m D™, vy = VoD 72, (44)
Vg = )\3D_1, vy = )\4‘/*D_2, Vg = )\5‘/*2D_3.

Fig. 2. (a) Phase portrait of equation (41) in coordinates (y/92/3,y’/9). Ois a
complex equilibrium, T is a non-equilibrium singular point. Dashed line OA is the
separatrix of the origin. (b) The boundary-value problem in the same coordinates.
The separatrix OA (dashed) is the only integral curve, obeying (43); conditions (42)
select points on it, corresponding to the tip. Dash-dotted line TAy corresponds to
(2,3) and gives the only intersection point Ag. Solid lines correspond to vy = 0,
v =-01,vy=1v3=0.2,vy = —1.1, v5 = 1. In this case, there are three inter-
sections, Ay 23, and thus three solutions, € 33 ~ —0.95094, —0.64050, —0.49185,
and y1,23(0) =~ 0.078918, 2.2233, 0.12060.

A phase portrait of the differential equation (41) without the term O(y*) is
shown on Fig. 2(a). The only integral curve obeying the condition at infin-
ity (43) is the separatrix OA. This curve can be described analytically; it is
convenient to do that in a piecewise manner,

y(0)=(9/2)' Q¥ (14 Y%(())

11



y'(0) =300V (Q) (1 + V%) -,

(= L2y = ),
Y (¢) = (Toza(€) = Ta2sa(Q)) / (Toasal€) + Tasa(Q)) (45)

for o < 09, and

y(o)=—=(9/2)"PQ2°¢*° (1 - Y*(()),
y'(0)==30CY(¢) (1 - Y*Q)) - ©,
C = ?Ql/z(a - 00)3/27
Y(Q) = (T25(0) = T2sa(Q)) / (T13(¢) = T1aya(0))
= Kz/B(C)/Kl/B(C)a (46)

for ¢ > 09, where oq is an integration constant related to the position of the
tip point on the separatrix O A. We will call these pieces the J-branch and the
I-branch respectively (it is easy to see that one is the analytical continuation

of the other).

The tip point (0 = 0) may be at the .J-branch if g > 0 or at the /-branch if
09 < 0, in the latter case only the I-branch plays a role. Boundary conditions
at the tip from (42) in these two cases are

0= w5+ 62YoG "0 £ (9/2)" 20, (1 £ Y2) (3P0
F305CoY (14 Y2) Q= 150+ 0 ((1 +vg)” (goﬂ)-2/363> ,
0=cro F (9/2) P0G (1£Y2) Q¥ £ 3mGYo (1 £ Y2) Q +
o = 1)Q = n(9/2P0 0 (12 Y2) 5
Fur(9/2)PQM¢ (1 £ v2) [£30¢0Ye (1 £ ¥7) — 0] -
—e [£30G0Y, (1£Y2) =] + 0 ()., (47)
where the upper sign is for J-branch and lower sign is for /-branch,

B=Y(@) o= L0 (15

and Y'({) is the corresponding function from (45) or from (46).

So (47) is a system of finite (non-differential) equations for unknown variables

12



(o and €2, which, in principle, solves the problem. All kinematical parameters
of the spiral wave are expressed via (o and €2:

w=V:D'Q,
tan po = — (v3 + r4y(0) + v53'(0)) /(1 — y(0)) ‘
ro=D(V.)™ [(vs + may(0) + wsy/(0))° + (1 = y(0))] ",
K(0)=V,.D"y(0). (49)

?

Here rg 1s the core radius and (g is the orientation angle of the tip with respect
to its radius-vector.

System (47) in its general form is, however, rather complicated:

— The first of these equations is a cubic equation with respect to Q'/2, and
there may be up to three different spiral wave solutions in the same medium.

— Functions Y(() are transcendental, and explicit expression for (o(v;) cannot
be written for the general case.

— It depends on small parameter ¢ and should have solution with uniformly
small y(o), and the problem is still more complicated if there are small
parameters besides e.

Fig. 2(b) illustrates these difficulties: it shows an example with three solutions,
while two of them have y(0) small.

In following subsections, we consider two most important special cases, where
explicit results can be obtained.

3.2 The generic case.

Suppose that all dimensionless parameters of the medium given by (44) are
of the order of 1, and so ¢ is the only small parameter of the problem. Note
that, in particular, v3 ~ 1 requires that g, ~ V.

One can see that due to smallness of € when g, # 0, boundary conditions (47)
can be satisfied only with small  and large (, and with the tip o = 0 lying
at the I-branch. Then

y(0) = (6¢)71°0%° + 0 (2/°¢1°), (50)
y'(0)=—(60)7'0+0 (2, (51)

13



(= o= oo (52

Y(()=1+(60)"" +0(¢7?), (53)

With this precision, curvature distribution Y({) is the same as that of the
involute of a circle. If substituted into equation (41), these asympotics make
terms yy” and y'? much less than others, and can be obtained as a solution of
this equation with these terms left out. Note that neglecting these very terms
corresponds to independence of the normal front velocity on front curvature,
which is natural for very small curvature, and consistent with the spiral being
an involute of a circle.

If we look for the solution in the form

G=Ac+0(1), a>0,
Q=B +0 (625) , B3>0, (54)

boundary conditions become

0=vs + (6AB)Y/3F=2)/3,

+0 (63—(25-|-a)/37 2ﬁ+a)/37 e
0=ery — VlB2/3(6A)_1/36(2ﬁ+a)/3 — Beﬁ,

i B+20)/3 6(45—0:)/3) :

+0 (63, 604-}-67 62(204-}-5)/37 62(04-}-2@/37 6257 6(5ﬁ+o¢)/3) 7 (55)
and so
a=p3=1,
A = v3(6ro) " (1 — v3),
B = —1/01/3(1/1 — l/3>_1. (56)

Our solution has a physical sense only at positive (p and w. Hence, the following
inequalities should be fulfilled:

vz <0, (57)
evo(ry — v3) > 0. (58)
Inequality (57) means

g < 0, (59)

14



i.e. spiral wave solution can be found in this way only if the original half-
wave solution of the unperturbed system is growing but not shrinking. And
(58) shows that the spiral wave solutions are found only to one side of the
manifold R of the parametric space, which in our notations is determined by
equation € = 0.

Finally, the dimensional parameters of the spiral wave are

w= VfD_ll/oug(z/g — 1/1)_16 + 0 (62) )

tan o= —v3 — vo(v3 — vyg)(v3 — 1) e+ O (62) ,

ro=DV (1 + 1/3)1/21/3_1 [(1/3 —v)ryte™t — (1 — vaug) (1 + 1/3)_1] + O (e)

K(0)= —V*D_IZ/O(Vg — l/1>_16 +0 (62) )
3.3 The case of zero tip growth rate.

One of necessary conditions for the results of previous subsection is that pa-
rameter g, is nonzero — and, moreover, is negative. Let us consider the special
case

g« = 0. (61)

Now we look for solutions to the finite problem (47) in the form

C0=C*-|—A6°“-I—O(62“), a >0,
Q=B +0(¥),  B>0, (62)

at the J-branch, where (. ~ 0.68555 is the least positive root of equation

Taa(G) = J-aja(G.): (63)

Then Yy = —Ae® + O (e**) and hence boundary conditions (47) become

Pge — A(GBC*)I/BGQ+5/3 + 2—1/3V4(3BC*)2/3625/3 +0 (62a+ﬁ/3’ 6a+2ﬁ/3’ e 63—25/3) — 0,

Vo€ — 2—1/3V1(3BC*)2/362ﬁ/3 +0 (637 6cv-l—2ﬁ/37 eﬁ) —0.

where 3 = po/V.. This gives

15
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a=1/2,

13: 3/2’
A= (1/1173 + 1/01/4)(21/01/1)_1/2,
B=2"2(3¢)" (vo/11)*?, (65)

and the dimensional parameters of the spiral wave solution are

w=2"2(3¢) VD (o /m)2? 4+ 0 (&),
tan go = — [7s + vavo/m] e + O (/7))
ro= 271230 DV (/o) 22 — (i /o) 22 1 O (1),
K(0)=V.D™ (wo/m)e+ O (/7). (66)

This solution formally coincides, in the main orders, with that presented in

[10,11]:

w= VDM,
tan o =0,
ro= DV,
K(0)=V.D™"p,

where p is a small parameter and ¢ ~ 0.685 was found by numerical inte-
gration of equation (38). This coincidence is achieved by identifying p with
vovy e and € with 2'/2(3¢,)™" ~ 0.68763. In this ‘weak’ sense we can say that
the ‘traditional’ case is of codimension 1 relative to the generic case, as the
‘traditional’ spiral wave solution can be achieved if one additional conditions
(61) is fulfilled. Note, however, that this is only a formal correspondence, as
the small parameter p of [10,11] has different physical sense from e: while €
shows the instantaneous turning rate of a tip of an uncurved half-wave, with
its growth rate being zero in this case, p is proportional to the growth rate
while the turning rate is assumed identically zero. This is because coincidence
of the solutions was achived not by coincidence of equations.

4 Discussion.

In this paper we have derived motion equations both for the crest line of the
excitation wave and for its tip, within a single perturbation procedure and
using only assumptions of smallness of typical wave curvature and proximity
to the manifold of stationary propagating half-wave solutions in parametric

16



space, supposedly corresponding to Winfree’s boundary 9dR. These motion
equations are obtained here for the first time. The motion equations depend
upon coefficients determined by the properties of the linearised operator at
these basic solutions.

It is interesting to compare our results with the traditional ‘kinematic’ theory
of [10,11], built partly from asymptotical and partly from phenomenological
consideration. The traditional tip motion equations (2), (3) do not coincide,
nor are they a partial case of our new equations (36), as (3) has different
functional form. However, if we restrict consideration to stationary solutions,
they can be considered as a special case. How special is it?7 We answer this
questions in terms of relative codimension, i.e. number of additional equalities
for parameters required to obtain this case. If we look for conditions when
the spiral wave solutions are identical to those obtained from the traditional
approach, then the only additional condition (61) is required, and in this sense
the traditional approach has relative codimension one. However, as it was
noted in Section 3.3, this provides only formal correspondence of the solutions,
and even the small parameters in these solutions have different physical sense.

Another possible interpretation of this question is, when the equations rather
than solutions become identical to the traditional ones. To see it, during deriva-
tion of (36) we had retained more terms than were really used; and some terms
did not play any role because of their additional smallness caused by slow vari-
ation of curvature along the crestline, not accounted for by ansatz (19). Let us
consider now the minimal cut-off system, obeying the following requirements:
(i) it has all the terms necessary to achieve the generic solution of Section 3.2,
(ii) it has all the terms necessary to achieve the ‘non-growing’ solution of Sec-
tion 3.3, formally equivalent to the ‘traditional’ spiral wave solutions, and (iii)
it has all the terms necessary to have the ‘traditional’ tip motion equations
(2), (4) as a special case. This minimal system is (we drop symbols O ())

0= 6)\0 + (D — /\Q)IX’/ + (g* + €l — )\1)[&7 + (ILL1 — /\3)[{27
w = 6)\0 - )\1[( - /\2](/ - )\3](2,
G=g.+epo+ mK, (67)

Now, consider a special case defined by the following five conditions

9-=0
Xo=0
A =0
\o=D
A3 =0 (68)

and make a change of parameters
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K.= _6ﬂ0/ﬂ1

Then the minimal system gets the form

0=K.— K(0)
w=—DK'(0)
G=~(K.— K(0)) (70)

coinciding with that of (4), (18), (2). Thus, in terms of motion equations,
the traditional case has the much higher codimension five. This means that,
while there is a certain probability that in a particular system condition (61)
may be fulfilled with reasonable accuracy, and stationary spiral wave solution
would have the properties predicted by the traditional equations, there is much
less hope that the five conditions (68) would be fulfilled simultaneously, even
approximately, and so the usefullness of the traditional equations for the study
of parametric dependencies is much more doubtful. The applicability of those
equations for nonstationary regimes is still more restricted, as in that case the
‘traditional’ equations do not match the new ones.

Having found spiral wave solutions in the vicinity of the manifold ¢ = 0 of
stationary propagating half-wave solutions, we now can rethink its relationship
with dR. The following properties of the line ¢ = 0 are similar to that of JR:

— Spiral wave solution exist only to one side of this manifold, which is ex-
pressed by the condition (58).
— Approaching this manifold is accompanied by growth of spiral wave period

and core radius as €',

Some new properties of this parametric region are predicted by the new theory,
for instance

— The tip angle g should be varying along this boundary, being always pos-
itive. In other words, growing half-waves can give birth to spiral waves via
perturbation of parameters.

— There may be a codimension 2 submanifold 9?R C dR on this boundary
(e.g. a point in a two-dimensional parametric space) where g — 40, cor-
responding to the half-wave neither growing nor shrinking. Near this sub-
manifold, the asymptotics of spiral wave solutions are different, e.g. period
and radius grow as ¢~%? rather than ¢! (this is the ‘traditional’ solution).

— Analytical continuation of R through 9*R, if any, is no longer a ‘rotor
boundary’. In other words, perturbation of shrinking half-waves does not
produce spiral waves. So, R, generically, is a manifold with a border.

These new properties can be tested by numerical experiment; however, due
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to their asymptotical nature, it may be of considerable computational cost.
A qualitative prediction of existence of 9?R should be easier to test. It is not
observed in Winfree’s [15] parametric map of the FitzHugh-Nagumo system,
nor in Barkley’s [16] map of his ‘vertical isoclines’ system. However, it is worth
noticing that while in [16] R is well separated from the meander boundary
OM, i.e. the boundary between rigidly rotating spirals and biperiodic spirals,
in [15] the rotor boundary dR after some point, goes very close to M, and to
distinguish them reliably, very careful computations are required. So, we can
put forward a hypothetical alternative interpretation of that diagram, that at
0*R, manifolds OR and dM join, and what goes next and shown as OR and
OM going close to each other, is actually single boundary between meandering
(biperiodic) spiral waves and the absence of any spiral waves solutions. Join-
ing OR and M would mean that in the vicinity of 9*R, there is transition
from simple (rigid) to compound (meandering) rotation not due to interac-
tion of the wave tip with the refractory tail (which is commonly considered as
physical mechanism of meander). The possibility of such a transition has been
recently hypothesized by Starobin & Starmer [17]. Note, that in this case, the
transition would be described within the new kinematic theory, and seen as
Hopf bifurcation of a stationary solution in the evolution equations for the
‘natural equation’ K (s,t) of the crest line. We believe that all these question
deserve further study.

From the viewpoint of practical importance of the kinematic theory, the as-
sumption of the proximity to the R boundary may seem rather exotic. How-
ever, in terms of properties of cardiac tissue, it corresponds to reduced ex-
citability and/or shortened action potential and refractoriness, which are fea-
tures of certain pathological conditions, and this makes this limit interesting
from the practical viewpoint. For instance, numerical experiments of Efimov
et al. [18] with a model of ventricular tissue show that transition through oM
(which is the way leading to the R boundary in Winfree’s [15] diagram) can
be achieved by reducing the number of functioning Na channels, and such
a reduction is known to correlate with certain cardiac pathologies, such as
ischaemia and influence of some pharmaceutical agents.

In this respect, it is interesting to compare the “kinematic” theory considered
here with the ideologically close approach of [12-14]. Despite the fact that
these two approaches are close relatives and even have equation (1) in common,
the “Fife limit” theory is based on the consideration that excitation wave has
a sharp front and a sharp back, and description is made in terms of motion of
these two lines. Though the notion of sharp front is quite relevant to cardiac
excitation wave, the notion of the waveback is rather questionable, the tip
is not a junction of the front with the back and the “Fife” theory is hardly
applicable to heart tissue at all. On the contrary, the kinematic approach needs
neither a sharp back nor even a sharp front, and only assumes that the crest
line remains smooth and pulse profile across this line perturbed slightly, and
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these conditions may be relevant to certain conditions in heart.
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