
EZ-SCROLL DOCUMENTATION

I. General

This package uses OpenGL for 3D rendering. I routinely run EZ-Scroll on my PC with the

Linux operating system. Note, you can run without graphics, but you must have OpenGL

header files and libraries to use the code.

The EZ-Scroll package (in particular this document) is always under development. There

are aspects of the code which I am not happy with, but to my knowledge everything works

correctly.

The philosophy is to keep programs as simple as possible and to provide documentation

by way of comments within the code itself. The user is expected to modify the programs

according to his or her needs. The bulk of the package is devoted to graphics. Almost all of

the execution time is spent in a loop in the routine Step() in ezstep3d.c.

The computational methods are described in more detail in the references at the end of this

document. Ref. [5] describes the 3D implementation. Ref. [2] is the original source for the

model. If you generate publications from using EZ-Scroll, I ask that you please cite these

papers.

II. Running EZ-Scroll

Files: You should have the following files:

ezscroll.c, ezstep3d.c, ezgraph3d.c, ezmarching.c, ezscroll.h, ezstep3d.h, ezgraph3d.h, ez-

marching.h, task.dat, and Makefile.

You will probably want to save copies of these files (in compressed tar format).

make: It is up to you to edit Makefile as necessary for your system. I always use the GNU

C compiler (gcc). You may, if you wish, specify NX etc. at compile time. Then these will be

ignored in the task file. You can expect 10% to 20% improvement in speed if fix NX, NY,

and NZ at compile time.

Make ezscroll by typing make. Then run by typing ezscroll. A window should open containing

an initial condition for a scroll wave. The u-field is plotted. Hitting the space bar will start

the simulation. This is a coarse resolution run showing the speed possible with EZ-Scroll

simulations. With the pointer in the EZ-Scroll window, you can:

1



(1) Switch between u-field, v-field, and no field by typing u, v, or n respectively.

(2) toggle filament plotting by typing f. (The filament is just the intersection of 2 contours.)

(3) Toggle the clipping plane by typing c.

(4) Pause the simulation by typing p, and resume by typing a space.

(5) Rotate the image by first pausing the simulation, then by holding down the left mouse

button and moving the cursor.

(6) The key r resets the view to the initial (start up) view, and z sets the view to looking

down the z-axis with the x- and y-axes in the usual orientation. This view is useful

for moving the scroll.

(7) The arrow keys move the scroll in the x-y directions. The + key moves the scroll up

the z-axis and the − moves it down the z-axis. Again, for moving the scroll it is best

first to have set the view by typing z.

(8) Stop the simulation by typing:

q for soft termination with all files closed or

ESC for immediate termination without writing final conditions (equivalent to typing

control-C from the shell).

After a successful run, you will have a file fc.dat in your directory which contains the final

conditions of the run. If you copy this file to ic.dat, then the next time you run ezscroll, this

file will be read and used as an initial condition.

IV. Equations and Parameters

The model reaction-diffusion equations are [1,2]:

∂u

∂t
= ∇2u+ ε−1u(1− u)(u− uth(v)),

∂v

∂t
= Dv∇2v + g(u, v)

The method employed in EZ-Scroll is (essentially) independent of the choice of the functions

uth(v) and g(u, v) and the user is free to set these to whatever is desired. See ezstep3d.h.

In the simplest case

uth(v) =
v + b

a
, g(u, v) = u− v,

so that a, b, and ε are parameters of the reaction kinetics. Dv is the ratio of diffusion

coefficients (Du ≡ 1 by choice of length scales). In addition, there are lengths specifying the

simulation volume: Lx, Ly, and Lz. Of these I choose to specify only Lx and let Ly and Lz

2



be determined from the number of grid points (see below). Thus the “physical” parameters

in the simulation are: a, b, 1/epsilon, Lx and Dv.

The “numerical” parameters for the simulation are: nx, ny, nz = number of spatial grid

points in each direction, ts = time step as fraction of the diffusion stability limit, and delta

= small numerical parameter [1,2]. From nx and Lx the grid spacing is determined and from

this and ny, nz the lengths Ly, Lz are determined.

The other parameters set in task.dat are:

Number of time steps to take

Time steps per plot. Also set the number of time steps per filament computation.

write filament. Flag for writing filament data

Time steps per write to history file

(i, j, k) history point

initial field

initial condition type.

simulation and rotation resolutions

output type

verbose

These are more or less self-explanatory. If write filament is non-zero then the filament will be

computed every Time steps per plot (whether or not there is any graphics) and the filament

data will be written to a file (filament.dat). Note: each line of filament data consists of the

time and a pair a points defining a line segment on the filament.

If the (i, j, k) point is in the domain, then a time series at the (i, j, k) grid point will be saved

every Time steps per write assuming it is not zero.

I leave it to you to look at different initial condition types at the end of ezscroll.c.

If simulation resolution=1, then all the points in the simulation grid are used for the iso-

surface and filament computation. If simulation resolution=2, then every other point in each

direction is used, i.e. 1/8 as many points. This results in faster graphics. The same applies

to the rotation resolution for setting the resolution during rotations only. Note: the simulation

3



resolution sets the resolution of filament computation even in the absence of any graphics, so

for accurate filament data set simulation resolution to 1.

The other place to look for “parameters” is in the header files. The main compilation

parameters are in ezscroll.h. Note that SPLIT is 1 in the distribution, but I think 0 is a

better choice except at large time steps (See ezstep3d.c). Many of the macro definitions in

the other header files can be replaced with variables.

References

[1] D. Barkley, M. Kness, and L.S. Tuckerman, Phys. Rev. A 42, 2489 (1990).

[2] D. Barkley, Physica 49D, 61 (1991).

[3] D. Barkley, Phys. Rev. Lett 68, 2090 (1992).

[4] D. Barkley, Phys. Rev. Lett. 72, 164 (1994).

[5] M. Dowle, R.M. Mantel, and D. Barkley, Int. J. Bif. Chaos 7, 2529 (1997).

Please send comments to D.Barkley@warwick.ac.uk

4


