
DXSpiral Version 1.0 : User’s Guide

D. Barkley, V. N. Biktashev, I. V. Biktasheva, G. V. Bordyugov, A. J. Foulkes

September 17, 2010

Abstract

DXSpiral is a collection of programs dealing with spiral waves on a polar grid in a disk,
including finding their response functions. It is a public release version of the code used for
obtaining results reported in [1, 2, 3, 4, 5], light-weighted by removing the most specialized
bits.

1 Purpose

DXSpiral is a toolkit for calculating solutions of the following problems:
Reaction-diffusion system of equations in a disk of radius R:

∂tu = f(u,p) + D∇2u, |~r| < R, ~r ·D∇u = 0, |~r| = R, (1)

where u(~r, t) = (u1, . . . u`)T is a column-vector of the reagent concentrations, f(u; p) = (f1, . . . f`)T

is a column-vector of the reaction rates depending also on a vector of parameters p ∈ Rk, D is a
diagonal `× ` matrix of diffusion coefficients, and ~r ∈ R2 is the vector of coordinates in the plane.
Functions f are for three selected models: FitzHugh-Nagumo and Barkley models (both for ` = 2,
k = 3)

Nonlinear problem

f(U,p)− ωUθ + D∇2U = 0, |~r| < R, ~r ·D∇U = 0, |~r| = R,

P (U(~rP)) = 0. (2)

The unknowns in this problem are function U(~r) ∈ R`, the spiral wave solution, and scalar
ω, the rotation frequency. The vector PDE is for a stationary solution of (1) considered in a
frame of reference rotating with angular frequency ω, clockwise for ω > 0. The finite scalar
equation is the pinning condition: without it, the solution of (2) would be non-unique because of
rotational symmetry. Currently the pinning condition is ‘hard-wired’ as P (U) = U2−u∗, u∗ = 0.1,
|~rP | = R, whereas direction of ~rP is arbitrary, depending on initial approximation. The details
of the pinning condition should be made parameters and/or model-specific in future
releases.

Linear problems

(D∇2 − ω∂θ + ∂uf(U))V(n) = (iωn+ µn)V(n),
[
~r ·D∇V(n)

]
|~r|=R

= 0,

(D∇2 + ω∂θ + ∂uf(U)T)W(n) = (−iωn+ νn)W(n),
[
~r ·D∇W(n)

]
|~r|=R

= 0,

(3)

for n = 0,±1 (obviously the case of n = −1 is the complex conjugate to that of n = 1), where
U is a solution of (2). Here the unknowns are the Goldstone Modes V(n) ∈ C`, the Response
Functions W(n) ∈ C` and the eigenvalues µn, νn ∈ C which are expected to be small when R is
large. In the same limit, the solutions for V(n) can be obtained explicitly via derivatives of U
(“analytical solution”). In the formulation (3), the solutions for V(n) and W(n) are non-unique
due to linearity, so normalization conditions are required. We use normalization conditions based
on expected properties of inner products of V(n) and W(n) for large R; see [1] for details.

1

2 Tests

2.1 1: Barkley model, starting from EZSPIRAL data

This test uses file fc.dat in subdirectory EZSPIRAL. The file is the result of an interactive run
of EZSPIRAL with the task file placed in the same subdirectory. The interactive run was done in
such a way that to ensure the spiral wave rotates around the centre of the box, by switching tip
tracing on and off and using arrow keys to move the spiral.

This DXSpiral test can be run using command

make test1

which in turn will lead to execution of individual sub-tests, such as

make test1-2dx
make test1-omg
make test1-non
make test1-lin
make test1-int

etc (see Makefile). The sub-tests can be called in any order, provided the pre-requisits already
exist, as the targets of all test rules are phony. This is done so that to avoid the necessity of doing
all tests from the beginning after an insignificant correction of a dependency. All the intermediate
and final results of this test are placed in subdirectory test1; if it does not exist, it will be created
(similarly for other tests).

If you have X11 graphics on, the tests will be accompanied by graphical illustrations of results
obtained; otherwise, you will only see the messages in the terminal window and result files in
subdirectory fhn.

The individual steps (subtests) do the following:

• test1-2dx: converts the EZSPIRAL data into DXSpiral data. This assumes that the centre
of rotation of spiral is in the centre of the box, and uses the maximal inscribed disk of the
box. The ω component of the resulting DXSpiral solution is zero, as there is no information
about ω in the EZSPIRAL data.

• test1-omg: estimates ω for the result of the previous step.

• test1-non: finds the spiral wave solution of eigen/boundary value problem (2) using the
result of the previous steps as an initial guess. No parametric continuation is done in this
simplest example. Note that we know the size of the disk that was produced by ez2dx: it is
half the box size of EZSPIRAL/task.dat.

• test1-lin: Solves the linear problems (3) for the solution obtained in the previous steps.

• test1-int: calculate some of the integrals using solutions of the linear and nonlinear prob-
lems.

2.2 2: FitzHugh-Nagumo model, starting from EZRide data

This test uses files fhn1/fc.dat and quot.dat fc.dat in subdirectory EZRide/fhn1. The file
is the result of a consecutive fully automatic run of EZRide with the task files fhn0.task and
fhn1.task placed in EZRide subdirectory (see EZRide/Makefile. This has produced a spiral wave
which is not centered but whose center of rotation and angular velocity can be found based on
data in quot.dat.

The test can be run using command

make test2

and the individual steps do the following:

2

• test2-2dx: convert the EZRide data into the DXSpiral data. Program ez2dx calculates the
position of the centre of rotation of the spiral in the EZRide box and choses the DXSpiral
disk as the maximal inscribed disk centered at that point. Hence the disk radius is not known
a priori but is a result of calculations made at this step. It happens to be R = 14.0282 (see
test2/ez2dx.log).

• test2-non: solves the nonlinear problem. Here we pretend that we need the solution in a
disk of a particular radius, R = 12.8, so dxnon continues the resulting spiral wave solution
to the required disk radius.

• test2-lin: solves the linear problem.

• test2-int: calculates some of the integrals.

2.3 3: FitzHugh-Nagumo model, starting from scratch

This test uses DXSpiral’s own timestepper dxtime to obtain an initial approximation.

• test3-arch: Creates a “cross-field” initial condition for a spiral wave in a disk of radius R =
12.8. The cross-field values are specified in file fhn1.rec: columns correspond to dynamic
variables and rows to records equidistant along a period of a periodic plane wave solution. In
our case, the values are chosen by hand and there is four of them; the corresponding values
are assigned to the four 90◦-sectors of the disk. The “cross-field” is a bit unusual in that
the lines separating different values of dynamic variables are not straight, but Archmedean
spirals, with the pitch λ = 10.

• test3-time1: Starts from this initial condition and calculates a spiral wave by running
forward in time, i.e. solving (1).

• test3-time2: Continues time run, now gradually decreasing disk radius down to R = 4.8.
The purpose of this and the next steps is to force the spiral to rotate around the centre of
the disk, with sufficient accuracy.

• test3-time3: Continues to run further in the same disk with R = 4.8, to let the spiral to
settle to a circular motion around the disk centre.

• test3-omega: Endows the previousy obtained spiral wave solution with an estimate of its
ω.

• test3-non1: solves the nonlinear problem in the disk R = 4.8 using the result of the previous
step as an initial approximation, and then continues it to a bigger disk R = 12.8.

• test3-non2: interpolates the previous result to a finer grid, from nr = 48 to nr = 160, and
solves the nonlinear problem again (no further parameter continuation is done).

• test3-lin: solves the linear problem.

• test3-int: calculates some integrals.

Compare the results of tests 2 and 3. They are for the same problem but obtained from different
initial approximations and to a different radial resolution. The spiral wave solutions are not close,
as their angular position is arbitrary (depends on initial approximation). However the results of
integration are comparable, with the exception of the x and y components of the resonant drift
velocity (which depends on the choice of the angular position of the spiral wave). Naturally, the
finer resolution of test 3 makes its results more accurate (compare with [1]).

3

3 Data formats

First we describe the format of data with which all the individual programs operate. The data
represent the solution of one of the above problems, real- or complex-valued, on a polar grid with
regular radial and angular spacings. Its syntax stems from EZ-software: first several lines describe
some parameters in ASCII, one parameter per line, with the rest of the line treated as a comment.
After that go the data in the said format, in a certain order described below.

The parameter lines go like this:

• Line 1: model name - character string. Currently recognized values are: “FitzHugh-Nagumo”
or “FHN”, “Barkley” or “bkl”, and “Beeler-Reuter-M”.

• Line 2: np - integer, number of model parameters. Currently FitzHugh-Nagumo depends
on 3 parameters, Barkley model depends on 3 parameters and Beeler-Reuter depends on 5
parameters. The number specified here must match the number expected for the selected
model.

• Line 3: nv - integer, number of dynamic variables (components) in the model. For both
FitzHugh-Nagumo and Barkley the value is 2, for Beeler-Reuter it is 7. The number specified
here must match the number expected for the selected model.

• Lines 4 . . . np + 3 : reals, the values of the np model parameters.

• Lines np+ 4 . . . np+ nv+ 3 : reals, the values of the diffusion coefficients for every of the nv
components of the model.

• Line nv + np + 4: nt - integer, the number of discretization points in the angular direction.

• Line nv + np + 5: nr - integer, the number of discretization points in the radial direction,
not including the centre.

• Line nv+np+6: only the first character in this line is important. This must be either ’A’ or
’B’, which states whether the subsequent data will be in Ascii or Binary formats respectively.

The order of data values:

• The value of ω.

• The point record of the solution at the origin (the centre of the disk), comprising

– The nv values of the dynamic variables

• The nv “rings”, each comprising

– The radius of the ring, i.e. its distance from the origin,

– The nt point records on that ring, each comprising

∗ The nv values of the dynamic variables

For complex data produced by dxlin, the dynamic variable data double up: each entry presents
first the real part and then the imaginary part of the corresponding element.

Apart from data files, some of the programs require “task” files. Their formats are described
below together with the corresponding programs.

4

4 Individual programs in the kit

Common features

The programs use input data (some don’t), task files (some don’t) and put the results into files
with fixed names in an output directory. The output directory is specified on the command line.
If the output directory does not exist it will be created. If files with the same names as output
files already exist in the output directory, they will be overwritten. The messages are issued to the
standard output and copied to file called <name>.log where <name> is the name of the program.

If you have X11 on your computer and its use is enabled in the Makefile, then the results of
calculations will be illustrated graphically, including the final results and sometimes intermediate
results. Each colour component (red/green/blue) represents distribution of one of the dynamic
variables, e.g. red corresponds to the activator . The values of the variables are suitably scaled
so bigger luminosity of colour corresonds to bigger value of the variable and vice versa. The
scaling method differs for solutions of the linear problems (dxlin) and nonlinear problems (all the
rest that produce graphics). For linear problems, zero is mapped to 50% luminosity, and either
0% or 100% is luminosity is achieved at least at one point. For nonlinear problem, the values
corresponding 0% and 100% luminosity are “hard-wired” in the code, model-specific. Note that
solutions of linear problems are complex, so each is shown twice: for the real and for the imaginary
part.

If you have libjpeg installed on your computer and its use is enabled in the Makefile, then the
output directories will contain JPEG images. The JPEG images are all grayscale and correspond
to all, rather than selected three, dynamic variables (this comment obviously is not essential for
FHN and Barkley model, but will be for models with nv > 3). Solutions of linear problems are
complex and their real and imaginary parts are written in separate files, which is reflected in the
files’ names. Each JPEG image <name>.jpg corresponding to a linear solution accompanied by
the corresponding file <name>.max which is a plane text file containing a positive real number A.
This number defines the value scale for the image: the white of the image corresponds to value A
of the corresponding variable, and the black of the image corresponds to value −A.

Groups of programs

We shall now proceed to description of individual programs, by groups:

• first the most essential (dxnon, dxlin and dxint),

• then convenience programs used in the tests (dxarch, dxtime, dxomega, ez2dx),

• and finally other programs which are not used in the tests but which the user might find
convenient in some circumstances (dxflip, dxreport).

5

dxnon — Solve the nonlinear problem

Call:

dxnon <task file> <input data file> <output directory>

Purpose:

This program solves the nonlinear problem (2) by Newton iterations and, if asked, parameter
continuation. The parameter continuation is via straightforward division of the parameter range to
a specified number of parameter steps, and then solving the nonlinear problem for each step, taking
previous solution as the initial approximation for the next step, without anything sophisticated
like prediction-correction. The continuation is done along a segment of a straight line in the
np+nv+1-dimensional parametric space (np kinetic parameters, nv diffusion coefficients and disk
radius R). The beginning of this segment corresponds to the parameters in the input data file, and
the end of this segment corresponds to the parameters in the task file. If the grid in the task file
and in the input data files do not coincide, then interpolation (bi-linear in polar coordinates) to the
task grid is done first. If parameter R (the disk radius) changes during parameter continuation,
the data are not interpolated from the old to the new grid on every steo, instead the grid itself is
considered expanded or compressed (thus change of R should never be done in too large steps).

The Newton iteration are also done in a straightforward manner, controlled by the norm of
the residual, which is Euclidean norm of a vector of differences between left- and right-hand sides
of the discretized system of equations. The only deviation is: if a given Newton iteration would
lead to an increase rather than a decrease of the residual norm, then only half of the Newton step
is tried, and if that is still too much, then a quarter is tried, and so on, until the resulting residual
falls below the previous value, in which case we accept the step and proceed to the next iteration,
or the fractional steps becomes unreasonably small, in which case we admit defeat and stop the
program with an error message and nonzero exit code.

The task file

specifies a number of compulsory parameters and and a number of optional parameters. If an
optional parameter is not specified, a default value is taken.

The compulsory parameters are in the top lines of the file:

• Line 1: model name

• Line 2: np, the number of model parameters

• Lines 3 . . . np + 2: the np values of model parameters

• Line np + 3: nv, the number of model dynamic variables

• Lines np + 4 . . . np + nv + 3: the nv values of diffusion coefficients

• Line np + nv + 4: nt, the number of angular discretization intervals

• Line np + nv + 5: nr, the number of radial discretization intervals

• Line np + nv + 6: R, the disk radius.

The optional parameters are given in subsequent lines in the following order (we give the
default values in parentheses):

• nsteps (0): the number of parameter continuation steps. If nsteps = 0, no parameter
continuation is done, parameters given in the input data file are ignored and the problem
is solved straight at the parameter values specified in the task. If nsteps = 1, then the
problem is solved first at the parameters given in the input data file, then the result is used
as an initial approximation for the problem at the ouptut data file, etc.

6

• binary (1): if zero, resulting data file is written in ascii, otherwise binary.

• verbose (1): 0 for none except fatal error messages, 1 for very brief, 2 for more detailed etc;
values above 5 make no further difference.

• newt necc (10−3): the convergence is considered failed unless the residual falls below this
level before the maximal number of iterations (see below) is done.

• newt suff (10−11): the convergence will is considered achieved as soon as the residual falls
below this level.

• maxit (25): the convergence is considered failed if the residue will not fall below newt necc
after this many iterations.

If a line is empty or value in it cannot be recognized, the parameter is given the default value. If
there are too few lines, the parameters that would be in the missing lines are given the default
values,

Output:

• spiral.dat — the resulting solution data file,

• spiral*.jpg — JPEG images of the components of the solution,

• spiral-ravg.dat — ASCII file with depedence of the components of the solution on the
radius (angle-averaged absolute values of the dynamic variables).

Also, depending on the value of verbose, optional data that may be useful for understanding
convergence problems:

• newton.dat — result of last Newton iteration.

• newton-*-*.jpg — JPEG images of Newton iterations (first star replaced by the step num-
ber, the second with the iteration number).

• read.jpg — picture of the very first initial approximation obtained from the input data file.

• interpolated.jpg — same, after interpolation (if task grid is different from input grid)

• initial.jpg — same, after rotating the initial approximation into the standard position
according to the pinning condition.

7

dxlin — Solve the linear problem

Call:

dxlin <task file> <output directory>
The output directory must exist, and the input data file, representing solution of the nonlinear

problem (2), is looked for in that directory, under the name spiral.dat (as it would be created
by dxnon).

Purpose:

This program solves the linear problems (3), that is finds both Goldstone Modes (eigenfunctions of
the linearized operator) and Response Functions (eigenfunctions of the adjoint linearized operator).
The Goldstone Modes are found in two ways: by numerical differentiation of the spiral wave
solution, and by solving the eigenvalue problem by the same method as used for finding Response
Functions, and which is described in the Programmers Guide and in the journal publication [1].

The task file:

contains no compulsory parameters. The optional parameters are:

• binary (1): same meaning as in dxnon.

• verbose (1): same meaning as in dxnon.

• kryl dim (10): Krylov subspace dimensionality (see the discussion in the Programmer’s
Guide and in [1])

Output:

• GM<n>.dat n = 0, 1, 2: the Goldstone Modes V(k), calculated by differentiation of the given
spiral wave solution, where k = n− 1.

• EF<n>.dat: same, calculated by solving the eigenvalue problem.

• RF<n>.dat, n = 0, 1, 2: Response Functions W(k), k = n− 1.

• <pref><n>-<part>-<comp>.jpg, for pref=gm,ef,rf, n = 0, 1, 2, part=re,im, <comp>=0..nv-1:
corresponding JPEG images.

8

dxint — Calculate the simpler integrals of response functions

Call:

dxint <output directory>
The output directory must exist and contain files spiral.dat, GM<n>.dat, EF<n>.dat, RF<n>.dat,

n = 0, 1, 2, produced previously by dxnon and dxlin.

Purpose:

This program uses the results produced previously by dxnon (file spiral.dat) and dxlin (files
GM<n>.dat, EF<n>.dat, RF<n>.dat, n = 0, 1, 2) to calculate several integrals, used for prediction
of the spiral wave drift, as described in [1] and [3], namely:〈

W(i)
∣∣∣V(j)

〉
= δi,j , i, j = 0,±1, (4)〈

W(1)
∣∣∣DV(1)

〉
= b2 + ic3, (5)〈

W(0)
∣∣∣D∂θV(0)

〉
= a0, (6)〈

W(0)
∣∣∣DV(0)

〉
= b1, (7)〈

W(1)
∣∣∣PkV(1)

〉
, k = 1 . . . nv, (8)〈

W(i)
∣∣∣ 1

2
ek

〉
, i = 0,±1, k = 1 . . . nv, (9)〈

W(1)
∣∣∣ 1

2
ρe−iθ

∂U
∂p`

〉
, i = 0,±1, ` = 1 . . . np, (10)

(11)

where
〈w|v〉 =

∫
D

w†(~r) v(~r) d2~r, (12)

vector ek is a unit column-vector with k-th component equal to one and the rest zero, and Pk =
ekeT

k . Integrals (4)–(8) are calculated with V(j) both “analytical” (obtained by differentiation of
U) and “numerical” (obtained by solving (3)).

The task file:

Not used.

Output:

The values of integrals (4)–(10) are printed as comments to standard output and dxint.log. Note
that in the present version, in the symbolical notations for the integrals in the program output,
the dynamic variables and parameters are enumerated starting from 0, whereas in formulas above
they are enumerated by indices k and ` starting from 1.

9

ez2dx — Convert EZSPIRAL or EZRide data to DXSpiral data

Call:

ez2dx <task file> <EZSPIRAL data file> <output directory>
or

ez2dx <task file> <EZRide data file> <EZRide quotient file> <output directory>

Purpose:

Creates initial approximation for dxnon from results of calculations with EZSpiral
(http://www.warwick.ac.uk/∼masax/Software/ez software.html, [6]) or EZRide
(http://www.maths.liv.ac.uk/∼vadim/software/EZRide/, [7]).

The programs distinguishes between the two cases by the number of command-line arguments.
In principle, the result of conversion can be also used as initial condition for dxtime.

The EZSPIRAL data file

is what EZSPIRAL itself would deal with as ic.dat or fc.dat file. It can be ASCII or binary. See
EZSRIRAL documentation for the format of the file. We used version 3.2; if another EZSPIRAL
version uses a different format, then ez2dx.c may need to be adjusted. Note that use of EZSPIRAL
data requires special care: the user is expected to arrange that the spiral wave rotates around the
centre of the box. Failure to do that is likely to produce unsuitable initial approximation fo dxnon
(but makes no big difference to dxtime).

The EZRide data file

For the purposes of DXSpiral, the format of this file is identical to that of EZSPIRAL except it
reports in its first line the name of the model, which can be either Barkley or FitzHugh-Nagumo
(synonym FHN). All comments from the previous paragraph apply for this case, except the one
about centre of rotation. The current version of ez2dx is compatible with EZRide version 1.0.

The EZRide quotient file

The advantage of EZRide calculations in “riding mode” is that it generates the spiral wave solution
in a fixed position (tip of the spiral at the centre of the box and in a fixed orientation) and also the
linear and angular velocity of the tip, as it would move if the riding mode is suddently switched
off. This allows one to determine the instant rotation centre for the spiral wave, so the manual
adjustments of the spiral position, which was required for EZSPIRAL, is not required for EZRide.
The determination of the centre may be not very precise, but it is automatic. For a DXSpiral
user, it is only important to understand that the quotient file is a plain text file containing four
coulmns of numbers, and ez2dx only uses the last line of this file. Hence it is important that the
last line is complete and contains four numbers.

Output:

• ez2dx.dat, the result of conversion,

• ez2dx-<n>.jpg, n = 1 . . . nv, the corresponding images.

10

dxarch — Achimedean spiral initial condition

Call:

dxarch <task file> <1D pulse profile> <output directory>

Purpose:

Creates initial conditions for dxtime using given 1D pulse profile and Archimedean phase distri-
bution.

The task file:

Compulsory parameters:

• Line 1: model name

• Line 2: np, the number of model parameters

• Lines 3 . . . np + 2: the np values of model parameters

• Line np + 3: nv, the number of model dynamic variables

• Lines np + 4 . . . np + nv + 3: the nv values of diffusion coefficients

• Line np + nv + 4: nt, the number of angular discretization intervals

• Line np + nv + 5: nr, the number of radial discretization intervals

• Line np + nv + 6: R, the disk radius.

Optional parameters:

• 1/λ (0.0) where λ is the asymptotic wavelength of the Archimedean spiral. Positive value
corresponds to spiral turning clockwise as it moves away from the centre.

• binary (1): as usual.

• verbose (1): as usual.

The 1D pulse profile:

This file should contain the values of the dynamic variables within a period of a plane wave, in
ASCII. The values should be arranged in nv columns. The lines will be interpreted as values of
the variables at equidistant moments in time throughout the period of the wave. These values
will be assigned to the points in the output “initial condition” data file depending on their polar
coordinates: direction from top to bottom in the profile corresponds to counter-clockwise direction.
The resulting data file represents a piece-wise constant function on the disk, where the number of
pieces equals the number of lines in the 1D pulse profile.

The contents of 1D pulse profile may be obtained by a simulation code or written by hand. A
case of four lines in the 1D pulse profile and 1/λ = 0 in the task file can represent to the classical
“cross-field” stimulation, similar e.g. to that used in EZSPIRAL. This is what is done in the
example profile fhn1.rec, only 1/λ is taken nonzero.

Output:

File arch.dat in the output directory is the generated data file that can be used as an initial
condition for dxtime.

11

dxtime — Time run

Call:

dxtime <task file> <input data file> <output directory>

Purpose:

This solves Cauchy problem for (1). The problem is described in the task file, and the initial
conditions are taken from the input data file. If the model parameter values and/or value of
R given in the task file differ from those given in the initial conditions, these parameters will
be linearly changed in time, from the initial conditions parameters in the beginning to the task
parameters in the end. The timestepping method is operator splitting, with reaction kinetics and
radial derivatives treated explicitly and angular derivatives treated implicitly, similar to that used
in [8].

The task file:

Compulsory parameters:

• Line 1: model name

• Line 2: np, the number of model parameters

• Lines 3 . . . np + 2: the np values of model parameters

• Line np + 3: nv, the number of model dynamic variables

• Lines np + 4 . . . np + nv + 3: the nv values of diffusion coefficients

• Line np + nv + 4: nt, the number of angular discretization intervals

• Line np + nv + 5: nr, the number of radial discretization intervals

• Line np + nv + 6: R, the disk radius.

Optional parameters:

• nsteps (1000): number of time steps to be done

• ts (0.1): the time step

• n out (1): if nonzero, the intermediate results will be output after every n out’th timestep.

• binary (1): as usual.

• verbose (1): as usual.

Output:

• time.dat: the final condition achieved so far, updated every n out steps. After completion,
contains the final condition.

• time-<k>.jpg, for k = 0 . . . nv− 1: the images corresponding to time.dat.

• time-<i>-<k>.jpg: images of intermediate results saved in sepearate files, rather than over
overwriting the same file over and over again — this happens when verbose > 4. This can
be useful for making movies.

• read.jpg — picture of the very first initial approximation obtained from the input data file.

• interpolated.jpg — same, after interpolation (if task grid is different from input grid).

12

dxomega — Estimate ω for a solution

Call:

dxomega <task file> <input data file> <output directory>

Purpose:

The nonlinear problem (2) differs from the dynamic equations (1), in particular, in that it has
an extra unknown, the angular rotation frequency ω. To proceed from solving time-dependent
problem (1) to the boundary-value eigenvalue problem (2), one can use the final condition of (1) as
an initial approximation for (2), but then one also needs an initial approximation for ω. Program
dxnon provides such an initial approximation. Let function u(~r), |~r| ≤ R, be this final condition
of (1), which is also the initial approximation of (2) and which is given in the input data file. The
idea is to calculate ∂tu according to (1), and then the required estimate is

ω =

∫
D

(∂tu)+ ∂θu d2~r

∫
D

(∂θu)+ ∂θu d2~r

.

(see [9] for why this is a reasonable estimate).
A further observation is that the Laplacian term in the right-hand side of (1) contributes

nothing to the value of the numerator, as
∮

(uθθ)+uθdθ = 0, hence in the above formula we take
∂tu = f(u).

The task file:

not taken. The value verbose = 4 is “hard-wired”, and the output file will be written binary if
and only if the input file was binary.

The input data:

contains the solution u for which ω is to be estimated.

Output:

spiral-omega.dat: A copy of the input data file with the ω as estimated.

13

dxflip — Flip the solution

Call:

dxflip <input data file> <output directory>

Purpose:

Invert the given solution about x-axis, that is, θ → −θ or equialently y → −y, and also invert
angular velocity, ω → −ω. This may be needed if an initial approximation or initial condition is
available in which the spiral rotates wrong way.

The task file:

not taken. The value verbose = 1 is “hard-wired”, and the output file will be written binary if
and only if the input file was binary.

Output:

• flipped.dat, the output data file

• flipped-<n>.jpg, n = 1 . . . nv, the corresponding images.

14

dxreport — Report on a solution

Call:

dxreport <input data file> <output directory>

Purpose:

Print out the values of parameters of the solution in the given data file, including those that may
be hidden in a binary format (namely ω and R), and visualize the solution.

The task file:

not taken any.

Output:

only report on the parameters to stdout with a copy to dxreport.log, and the images of the
solution.

15

Acknowledgement

Development of this software was supported in part by EPSRC grants EP/D074789/1 and EP/D074746/1.

References

[1] I. V. Biktasheva, D. Barkley, V. N. Biktashev, G. V. Bordyugov, and A. J. Foulkes. Compu-
tation of the response functions of spiral waves in active media. Phys. Rev. E, 79(5):056702,
2009.

[2] V. N. Biktashev, D. Barkley, and I. V. Biktasheva. Orbital motion of spiral waves in excitable
media. Phys. Rev. Lett., 104(5):058302, 2010.

[3] I. V. Biktasheva, D. Barkley, V. N. Biktashev, and A. J. Foulkes. Computation of the drift
velocity of spiral waves using response functions. Phys. Rev. E, 81(6):066202, 2010.

[4] A. J. Foulkes, D. Barkley, V. N. Biktashev, and I. V. Biktasheva. Alternative stable scroll
waves and conversion of autowave turbulence. arXiv:1006.5650v3 [nlin.PS].

[5] V. N. Biktashev, I. V. Biktasheva, and N. A. Sarvazyan. Evolution of spiral and scroll waves of
excitation in a mathematical model of ischaemic border zone. arXiv:1006.5846v1 [q-bio.TO].

[6] D. Barkley. A model for fast computer simulation of waves in excitable media. Physica,
49D:61–70, 1991.

[7] A. J. Foulkes and V. N. Biktashev. Riding a spiral wave: Numerical simulation of spiral waves
in a co-moving frame of reference. Phys. Rev. E, 81(4):046702, 2010.

[8] E. V. Nikolaev, V. N. Biktashev, and A. V. Holden. On feedback resonant drift and interaction
with the boundaries in circular and annular excitable media. Chaos Solitons & Fractals,
9(3):363–376, 1998.

[9] I. V. Biktasheva, A. V. Holden, and V. N. Biktashev. Localization of response functions of
spiral waves in the FitzHugh-Nagumo system. Int. J. of Bifurcation and Chaos, 16(5):1547–
1555, 2006.

16

