Website of Dalia Terhesiu

College of Engineering, Mathematics and Physical Sciences
University of Exeter
Harrison Building, North Park Road
Exeter, UK, EX4 4QF
Office H.273
Tel: ++44(0)1392 723110

Research interests: dynamical sytems; ergodic theory; statistical properties; mixing rates; infinite ergodic theory


  1. D. Terhesiu. Krickeberg mixing for Z extensions of Gibbs Markov semiflows. Preprint 2019. [.pdf]
  2. H. Bruin, D. Terhesiu, M. Todd. Pressure function and limit theorems for almost Anosov flows. Preprint 2018. [.pdf]
  3. H. Bruin, I. Melbourne, D. Terhesiu. Sharp polynomial bounds on decay of correlations for multidimensional nonuniformly hyperbolic systems and billiards. Preprint 2018. [.pdf]
  4. P. Kevei, D. Terhesiu. Darling-Kac theorem for renewal shifts in the absence of regular variation. Preprint 2018. [.pdf]
  5. H. Bruin, D. Terhesiu, M. Todd. The pressure function for infinite equilibrium measures. To appear in Israel J. Math. Preprint version [.pdf]
  6. J. Aaronson, D. Terhesiu. Local limit theorems for fibred semiflows. Preprint 2017. [.pdf]
  7. H. Bruin, D. Terhesiu. Regular variation and rates of mixing for infinite measure preserving almost Anosov diffeomorphisms. To appear in Ergodic Th. and Dyn. Syst. Preprint version: [.pdf]
  8. I. Melbourne, D. Terhesiu. Renewal theorems and mixing for non Markov flows with infinite measure. To appear in Ann. Inst. H. Poincaré Probab. Statist. Preprint version. [.pdf]
  9. D. Terhesiu. Non trivial limit distributions for transient renewal chains. Preprint version:[.pdf] Stat. and Probab.Letters (2017) 129 189--195. DOI:10.1016/j.spl.2017.05.013
  10. H. Bruin, I. Melbourne, D. Terhesiu. Rates of mixing for nonMarkov infinite measure semiflows. To apear in Trans. Americ. Math. Soc. DOI: Preprint version [.pdf]
  11. H. Bruin, D. Terhesiu. The Dolgopyat inequality in BV for non-Markov maps. Preprint version [.pdf] Stoch. and Dyn.(2018) 18 185-246. DOI: 10.1142/S0219493718500065
  12. I. Melbourne, D. Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. J. of Modern Dyn. (2018) 12 285--313. Preprint version [.pdf]. DOI: 10.3934/jmd.2018011
  13. H Bruin , D. Terhesiu. Upper and lower bounds for the correlation function via inducing with general return times.Preprint version [.pdf] Ergodic Th. and Dyn. Syst. (2018) 38 34--62. DOI:10.1017/etds.2016.20.
  14. I. Melbourne, D. Terhesiu. Operator renewal theory for continuous time dynamical systems with finite and infinite measure. Preprint 2014 [.pdf]. Monatsh. Math. (2017) 182--377. DOI:10.1007/s00605-016-0922-0
    This preprint subsumes our July 2013 preprint "Mixing for continuous time dynamical systems with infinite measure" [arXiv:1307.7990].
  15. D. Terhesiu. Mixing rates for intermittent maps of high exponent. Prob. Theory and Rel. Fields. 166 (2016) 1025--1060. DOI:10.1007/s00440-015-0690-0. Preprint version: [.pdf]
  16. C. Liverani, D. Terhesiu. Mixing for some non-uniformly hyperbolic systems. Annales Henri Poincare, 17 (2016) 179--226. DOI:10.1007/s00023-015-0399-8. [.pdf]
  17. D. Terhesiu. Error rates in the Darling Kac law. Studia Math. 220 (2014) no. 2, 101--117. DOI:10.4064/sm220-2-1.[.pdf]
  18. D. Terhesiu. Improved mixing rates for infinite measure preserving transformations, Ergodic Th. and Dyn. Syst. 35 (2015) 585--614. DOI:10.1017/etds.2013.59[.pdf]
  19. I. Melbourne, D. Terhesiu. First and higher order uniform ergodic theorems for dynamical systems with infinite measure, Israel J. Math. 194 (2013) 793--830. DOI:10.1007/s11856-012-0154-5[.pdf]
  20. I. Melbourne, D. Terhesiu. Decay of correlation for nonuniformly hyperbolic systems with general return times, Ergodic Th. and Dyn. Syst. Appeared online January 2013. DOI:10.1017/etds.2012.158[.pdf]
  21. I. Melbourne, D. Terhesiu. Operator renewal theory and mixing rates for dynamical systems with infinite measure, Invent. Math. 1 (2012) 61--110. DOI:10.1007/s00222-011-0361-4[.pdf]
  22. H. Bruin, M. Nicol, D. Terhesiu. On Young towers associated with infinite measure preserving transformations, Stoch. and Dynamics, 9 (2009), 635 - 655. DOI:10.1142/S0219493709002816 [.pdf]
  23. D. Terhesiu, G. Froyland, Rigorous numerical approximation of Ruelle-Perron-Frobenius operators and topological pressure for expanding maps, Nonlinearity 21 (2008) 1953-1966. DOI:10.1088/0951-7715/21/9/001 [.pdf]
  24. G. Froyland, R. Murray, D. Terhesiu, Efficient computation of topological entropy, pressure, conformal measures, and equilibrium states in one dimension, Physical Review E, 76:03:6702 , 2007. DOI:10.1103/PhysRevE.76.036702 [.pdf]
  25. D. Terhesiu. On the approximation of finite and infinite equilibrium states and some aspects of Young towers with non-integrable return time function, PhD thesis, UNSW, Sydney 2009.

For my list of pubilcations/preprints see also Google scholar profile

Teaching at Exeter Univ: Dynamical systems and chaos, Spring 2017
Advanced probability theory, Spring 2018, 2019
Linear algebra I/II, Spring 2018, 2019
Tutorials: Linear algebra, Algebra II, Real analysis
Students see ELE

Co-organized conference: Erwin Schrödinger Institute Thematic Programme "Mixing Flows and Averaging Methods" , Vienna, 4 April to 25 May, 2016. Organizers: P. Bálint, H. Bruin, C. Liverani, I. Melbourne and D. Terhesiu.

Updated August 2016