Website of Dalia Terhesiu
College of Engineering, Mathematics and Physical Sciences
University of Exeter
Harrison Building, North Park Road
Exeter, UK, EX4 4QF
Office H.273
Tel: ++44(0)1392 723110
Email: daliaterhesiu@gmail.com
Research interests: dynamical sytems; ergodic theory; statistical properties; mixing rates; infinite ergodic theory
Publications/Preprints

D. Terhesiu.
Krickeberg mixing for Z extensions of Gibbs Markov semiflows. Preprint 2019.
[.pdf]

H. Bruin, D. Terhesiu, M. Todd.
Pressure function and limit theorems for almost Anosov flows. Preprint 2018.
[.pdf]

H. Bruin, I. Melbourne, D. Terhesiu.
Sharp polynomial bounds on decay of correlations for multidimensional nonuniformly hyperbolic systems and billiards. Preprint 2018.
[.pdf]

P. Kevei, D. Terhesiu. DarlingKac theorem for renewal shifts in the absence of regular variation. Preprint 2018.
[.pdf]

H. Bruin, D. Terhesiu, M. Todd.
The pressure function for infinite equilibrium measures. To appear in Israel J. Math. Preprint version
[.pdf]

J. Aaronson, D. Terhesiu.
Local limit theorems for fibred semiflows. Preprint 2017.
[.pdf]

H. Bruin, D. Terhesiu.
Regular variation and rates of mixing for infinite measure preserving almost Anosov diffeomorphisms. To appear in Ergodic Th. and Dyn. Syst.
doi.org/10.1017/etds.2018.58. Preprint version: [.pdf]

I. Melbourne, D. Terhesiu.
Renewal theorems and mixing for non Markov flows with infinite measure. To appear in Ann. Inst. H. PoincarĂ© Probab. Statist. Preprint version.
[.pdf]

D. Terhesiu.
Non trivial limit distributions for transient renewal chains. Preprint version:[.pdf]
Stat. and Probab.Letters (2017) 129 189195. DOI:10.1016/j.spl.2017.05.013

H. Bruin, I. Melbourne, D. Terhesiu.
Rates of mixing for nonMarkov infinite measure semiflows. To apear in Trans. Americ. Math. Soc. DOI: https://doi.org/10.1090/tran/7582.
Preprint version [.pdf]

H. Bruin, D. Terhesiu.
The Dolgopyat inequality in BV for nonMarkov maps.
Preprint version [.pdf] Stoch. and Dyn.(2018) 18 185246.
DOI: 10.1142/S0219493718500065

I. Melbourne, D. Terhesiu.
Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure.
J. of Modern Dyn. (2018) 12 285313. Preprint version [.pdf].
DOI: 10.3934/jmd.2018011

H Bruin , D. Terhesiu.
Upper and lower bounds for the correlation function via inducing with general return times.Preprint version
[.pdf]
Ergodic Th. and Dyn. Syst. (2018) 38 3462.
DOI:10.1017/etds.2016.20.

I. Melbourne, D. Terhesiu.
Operator renewal theory for continuous time dynamical systems with finite and infinite measure.
Preprint 2014 [.pdf]. Monatsh. Math. (2017) 182377.
DOI:10.1007/s0060501609220
This preprint subsumes our July 2013 preprint "Mixing for continuous time dynamical systems with infinite measure" [arXiv:1307.7990].

D. Terhesiu.
Mixing rates for intermittent maps of high exponent. Prob. Theory and Rel. Fields.
166 (2016) 10251060.
DOI:10.1007/s0044001506900. Preprint version:
[.pdf]

C. Liverani, D. Terhesiu.
Mixing for some nonuniformly hyperbolic systems.
Annales Henri Poincare, 17 (2016) 179226.
DOI:10.1007/s0002301503998.
[.pdf]

D. Terhesiu.
Error rates in the Darling Kac law.
Studia Math. 220 (2014) no. 2, 101117.
DOI:10.4064/sm22021.[.pdf]

D. Terhesiu.
Improved mixing rates for infinite measure preserving transformations,
Ergodic Th. and Dyn. Syst. 35 (2015) 585614.
DOI:10.1017/etds.2013.59[.pdf]

I. Melbourne, D. Terhesiu.
First and higher order uniform ergodic theorems for dynamical
systems with infinite measure,
Israel J. Math. 194 (2013) 793830.
DOI:10.1007/s1185601201545[.pdf]

I. Melbourne, D. Terhesiu.
Decay of correlation for nonuniformly hyperbolic systems with general return times,
Ergodic Th. and Dyn. Syst. Appeared online January 2013.
DOI:10.1017/etds.2012.158[.pdf]

I. Melbourne, D. Terhesiu.
Operator renewal theory and mixing rates for dynamical systems with infinite measure,
Invent. Math. 1 (2012) 61110.
DOI:10.1007/s0022201103614[.pdf]

H. Bruin, M. Nicol, D. Terhesiu.
On Young towers associated with infinite measure preserving transformations,
Stoch. and Dynamics, 9 (2009), 635  655.
DOI:10.1142/S0219493709002816 [.pdf]
 D. Terhesiu, G. Froyland,
Rigorous numerical approximation of RuellePerronFrobenius
operators and topological pressure for expanding maps,
Nonlinearity 21 (2008) 19531966.
DOI:10.1088/09517715/21/9/001
[.pdf]

G. Froyland, R. Murray, D. Terhesiu,
Efficient computation of topological entropy, pressure, conformal
measures, and equilibrium states in one dimension,
Physical Review E, 76:03:6702 , 2007.
DOI:10.1103/PhysRevE.76.036702 [.pdf]

D. Terhesiu.
On the approximation of finite and
infinite equilibrium states and some aspects of Young towers with
nonintegrable return time function,
PhD thesis, UNSW, Sydney 2009.
For my list of pubilcations/preprints see also Google scholar profile
Teaching at Exeter Univ:
Dynamical systems and chaos, Spring 2017
Advanced probability theory, Spring 2018, 2019
Linear algebra I/II, Spring 2018, 2019
Tutorials: Linear algebra, Algebra II, Real analysis
Students see ELE
Coorganized conference: Erwin Schrödinger Institute Thematic Programme
"Mixing Flows and Averaging Methods" , Vienna, 4 April to 25 May, 2016.
Organizers: P. Bálint, H. Bruin, C. Liverani, I. Melbourne and D. Terhesiu.
Updated August 2016