| some reformulations of the Riemann Hypothesis
 
The two classic reformulations of the Riemann Hypothesis are
"M(x) = o(x1/2 + a) for all a 
> 0" (WWN notes) and 
"psi(x) - x = o(x1/2 + a)
for all a > 0" (WWN notes).
 Here M is a step function satisfying M(0) = 0, and constant except at positive integers, having a jump of $\mu(n)$
at each n. Recall that the Möbius function $\mu(n)$
is defined to be zero if n is divisible by a square, and is
otherwise equal to (-1)k where k is the number
of distinct prime factors in n.
 The function psi(x) is Chebyshev's 
prime-counting function, which the Prime Number Theorem
tells us is asymptotic to x.
 Recall that the Landau notation f(x) = o(g(x))
means that limx -> 0 f(x)/g(x) = 0.
 
 
 The following are all notes from WWN's work-in-progress 
"Zeta-functions and associated Riemann Hypotheses":
 Equivalences to Riemann Hypothesis
 The above contains links to abstracts of seven articles which are only accessible to 
subscribers to MathSciNet.  They can be alternatively accessed here:
 V.V. Volchov, "On
an equality equivalent to the Riemann Hypothesis, Ukr. Math. J. 47 No.3 (1995) 491-493
 F. Amoroso, "On
the heights of a product of cyclotomic polynomials, Rend. Semin. Mat. Torino
53 No.3 (1995) 183-191
 A. Verjovsky, "Discrete
measures and the Riemann hypothesis, Kodai Math. J. 17 No.3 (1994) 596-608
 J. Alcántara-Bode, "An
integral equation formulation of the Riemann hypothesis, Integral Equations Oper. Theory 17 No.2 (1993) 151-168
 A. Verjovsky, "Arithmetic,
geometry and dynamics in the unit tangent bundle of the modular orbifold", Dyamical Systems. Proceedings of
the 3rd international school of dynamical systems, Santiago de Chile, 1990 (R. Bamon, et.al., eds.) Longman Scientific and Tehcnical Pitman Res. Notes Math. Ser 285 (1993)
253-298
  W. Barrett, et.al., "On the spectral radius of a (0,1) matrix related to Mertens' function", Linear Algebra
Appl. 107 (1988) 151-159
 V.M. Popov, "On stability properties which are equivalent to Riemann hypothesis", Libertas Math.
5 (1985) 55-61
 RH equivalence to statement involving error 
term in Prime Number Theorem
 RH equivalence to statement involving order 
of pi(x)-li(x)
 M. Riesz's equivalence from the article
"Sur l'hypothèse de Riemann", Acta Math. 40 (1916) 185-190
 Bombieri's refinement of Weil's positivity 
criterion
 Xian-Jin Li's criterion
 G. Robin's equivalence involving the 'sum of
divisors' function
 Nicolas' equivalence involving Euler's totient
function
 Massias, Nicolas and Robin's equivalence
involving the maximum order of an element in the symmetric group
 
 
 
 The Riemann Hypothesis can also be reformulated in terms of a problem
involving Farey sequences.  This is dealt with in the following:
 J. Franel, "Les suites de Farey et les problemes des nombres
premiers." Gottinger Nachrichten, 198-201 (1924)
 E. Landau, "Bemerkungen zu der vorstehenden Abhandlung
von Herrn Franel." Gottinger Nachrichten, 202-206 (1924)
 A. Fujii, "A remark on the Riemann hypothesis."
Comment. Math. Univ.  St. Pauli 29 (1980), 195-201
 A. Fujii, "Some explicit formulae in the theory
of numbers. A remark on the Riemann Hypothesis." Proc. Japan Acad.,
Ser. A 57(1981), 326-330
 S. Kanemitsu, and M. Yoshimoto, "Farey series and
the Riemann hypothesis." Acta Arith. 75 (1996), no.
4, 351-374
 S. Kanemitsu and M. Yoshimoto, "Farey series and
the Riemann hypothesis. III." Ramanujan J. 1 (1997),
no. 4, 363-378
 J. Kopriva, "Contribution to the relation of the
Farey series to the  Riemann hypothesis on the zeros of the zeta function 
(Czech), Casopis Pest. Mat. {\bf 78} (1953), 49-55
 J. Kopriva, "Contribution to the relation of the
Farey series to the Riemann hypothesis" (Czech), Casopis Pest.
Mat. 79 (1954), 77-82
 M. Mikolas, "Sur l'hypothese de Riemann." C.
R. Acad. Sci. Paris 228 (1949), 633-636
 M. Mikolas, "Farey series and their connection with
the prime number problem. I." Acta Univ. Szeged. Sect. Sci. Math.13
(1949), 93-117
 M. Mikolas, "Farey series and their connection with
the prime number problem. II." Acta Univ. Szeged. Sect. Sci. Math.14
(1951), 5-21
 M. Mikolas, "On the asymptotic behaviour of Franel's
sum and the Riemann hypothesis." Results Math 21(1992)
no. 3-4, 368-378
 M. Yoshimoto, "Farey series and the Riemann hypothesis.
II." Acta Math.
Hungar. 78 (1998), no. 4, 287-304
 WWN notes on RH equivalences involving Farey series
 
 
 
 G. Mussardo and A. LeClair, "Randomness of Mobius coefficents and brownian motion: Growth of the Mertens function and the Riemann Hypothesis" (preprint 01/2021)
 [abstract:] "The validity of the Riemann Hypothesis (RH) on the location of the non-trivial zeros of the Riemann zeta-function is directly related to the growth of the Mertens function: the RH is indeed true if the Mertens function goes asymptotically as $M(x) \simeq x^{1/2+\epsilon}$. We show that this behavior can be established on the basis of a new probabilistic approach based on the global properties of the Mertens function. To this aim, we focus the attention on the square-free numbers and we derive a series of probabilistic results concerning the prime number distribution along the series of square-free numbers, the average number of prime divisors, the Erdos–Kac theorem for square-free numbers, etc. These results lead us to the conclusion that the Mertens function is subject to a normal distribution as much as any other random walk, therefore with an asymptotic behaviour given by $x^{1/2+\epsilon}$. We also argue how the Riemann Hypothesis implies the Generalised Riemann Hypothesis for the Dirichlet $L$-functions. Next we study the local properties of the Mertens function dictated by the Mobius coefficients restricted to the square-free numbers. We perform a massive statistical analysis on these coefficients, applying to them a series of randomness tests of increasing precision and complexity. The successful outputs of all these tests (with a level of confidence of 99% that all the sub-sequences analyzed are indeed random) can be seen as impressive experimental confirmations of the probabilistic normal law distribution of the Mertens function analytically established earlier. In view of the theoretical probabilistic argument and the large battery of statistical tests, we can conclude that while a violation of the RH is strictly speaking not impossible, it is however ridiculously improbable."
 
 
 
 M.L. Lapidus and H. Maier, "Hypothese de Riemann, cordes fractales vibrantes
et conjecture de Weyl-Berry modifiee", C. R. Acad. Sci Paris Ser. I Math.
313 (1991) 19-24.
 (Abstract) "Jointly with C. Pomerance, the first author has recently proved in
dimension one the "modified Weyl-Berry conjecture" formulated in his
earlier work on the vibrations of fractal drums.  Here, we show, in
particular, that (still in dimension one) the converse of this
conjecture is not true in the "midfractal" case and that it is
true everywhere else if and only if the Riemann hypothesis is
true.  We thus obtain a new characterization of the Riemann hypothesis
by means of a inverse spectral problem." 
 
 
 
 The following contain inter-related reformulations of the RH in terms of scattering
theory:
 P.D. Lax and R.S. Phillips, Scattering theory (Academic Press, 1967)
 P.D. Lax and R.S. Phillips, "Scattering theory for automorphic functions", Bulletin
of the American Mathematical Society 2 (2) (1980) 261-295.
 L.D. Faddeev and B.S. Pavlov, "Scattering theory and automorphic functions", Proc.
Steklov Inst. Math. 27 (1972) 161-193.
 
 
 
 The follow purportedly reduces the Riemann Hypothesis to an inverse
(quantum) scattering problem, and (despite the humility of the title),
claims to contain a proof of the RH.
 C. Castro, A. Granik, and J. Mahecha, 
"On SUSY-QM, fractal strings
and steps towards a proof of the Riemann hypothesis" (preprint 07/01)
 
 
 
 The following appears to be related to the work of Castro, et.
al., insofar as it involves inverse scattering:
 N.N. Khuri, "Inverse
scattering, the coupling constant spectrum, and the Riemann Hypothesis"
 "We use inverse scattering methods, generalized for a specific 
class of complex potentials, to construct a one parameter family of 
complex potentials V(s,r) which have the property that the zero 
energy s-wave Jost function, as a function of s alone, is identical 
to Riemann's xi function whose zeros are the non-trivial zeros of 
the zeta function. These potentials have an asymptotic expansion in 
inverse powers of s(s-1) with real coefficients
Vn(r) which are 
explicitly calculated. We show that the validity of the Riemann 
hypothesis depends essentially on simple integrability properties of 
the first order coefficient, V1(r). In the case studied in this 
paper, this coefficient does not satisfy these conditions, but proof 
of that fact does indicate several possibilities for proceeding 
further."
 
 
 
 W. Smith, "Cruel and unusual behavior of the 
Riemann zeta function"
 "We exhibit a sequence cn such that the convergence
of c1z + c2z2 +
c3z3 + ... for |z| < 1 is equivalent to
the Riemann Hypothesis.  Numerical investigation of the cn
revealed some astonishingly deceptive behavior."
 
 
 
 J. Lagarias, "An elementary problem equivalent
to the Riemann Hypothesis"
 
 
 
 J. Sondow, "The Riemann hypothesis, simple zeros and the asymptotic
convergence degree of improper Riemann sums", Proceedings of the 
American Mathematical Society 126 (1998) 1311-1314.
 [Abstract:] "We characterize the nonreal zeros of the Riemann zeta 
function and their multiplicities, using the "asymptotic convergence 
degree" of "improper Riemann sums" for elementary improper integrals. 
The Riemann Hypothesis and the conjecture that all the zeros are 
simple then have elementary formulations."
 
 
 
 L. de Branges, "A conjecture which implies the Riemann hypothesis",
Journal of Functional Analysis 121 (1994) 117-184.
 
 
 
 M.V. Berry has reformulated the Riemann
Hypothesis in terms of a search for a dynamical system with a very
particular set of properties.
 
 
 
 A. Beurling, Proceedings of the National Academy of Sciences
41 (1955) 312.  
 L. Baez, "On Beurling's real variable reformulation of the Riemann 
hypothesis", Advances in Mathematics 101 No.1 (1993) 10-30.
 E. Saias and M. Balazard, "The Nyman-Beurling equivalent form for
the Riemann hypothesis", Expositiones Mathematicae 18
(2) (2000)
 J.-F. Burnol, 
"A lower
bound in an approximation problem involving the zeros of the Riemann
zeta function"
 [abstract:] We slightly improve the lower bound of Baez-Duarte,
Balazard, Landreau and Saias in the Nyman-Beurling formulation of the
Riemann Hypothesis as an approximation problem.  We construct
Hilbert space vectors which could prove useful in the context of the
the so called 'Hilbert-Pólya idea'.
 J.-F. Burnol, "On an analytic 
estimate in the theory of the Riemann Zeta function and a Theorem of Baez-Duarte" 
 [abstract:] "We establish a uniform upper estimate for the values of zeta(s)/zeta(s+A), 
0<= A, on the critical line (conditionally on the Riemann Hypothesis). We use this to give
 a variant, purely complex analytic, to Baez-Duarte's proof of a strengthened 
Nyman-Beurling criterion for the validity of the Riemann Hypothesis."
 L. Baez-Duarte, "A strengthening
 of the Nyman-Beurling criterion for the Riemann Hypothesis" (preprint 02/02)
 [abstract:] "Let $\rho(x)=x-[x]$, $\chi=\chi_{(0,1)}$. In $L_2(0,\infty)$ consider the 
subspace $\B$ generated by $\{\rho_a | a \geq 1\}$ where $\rho_a(x):=\rho(\frac{1}{ax})$. 
By the Nyman-Beurling criterion the Riemann hypothesis is equivalent to the statement 
$\chi\in\bar{\B}$. For some time it has been conjectured, and proved in this paper, that 
the Riemann hypothesis is equivalent to the stronger statement that $\chi\in\bar{\Bnat}$ 
where $\Bnat$ is the much smaller subspace generated by $\{\rho_a | a\in\Nat\}$."
 L. Baez-Duarte, "Möbius-convolutions
and the Riemann hypothesis" (preprint 04/05)
 [abstract:] "The well-known necessary and sufficient criteria for the Riemann hypothesis of M. Riesz 
and Hardy-Littlewood, based on the order of growth at infinity along the positive real axis of certain entire 
functions, are here imbedded in a general theorem for a class of entire functions, which in turn is seen to be 
a consequence of a rather transparent convolution criterion. Some properties of the convolutions involved 
sharpen what is hitherto known for the Riesz function."
 
 
 
 J.-F. Burnol, "An adelic causality problem related to abelian L-functions",
Journal of Number Theory 87 no.2 (2001) 253-269.
 In this paper, Burnol uses a Lax-Phillips scattering framework to reveal "a natural
formulation of the Riemann Hypothesis, simultaneously for all L-functions, as a 
property of causality."
 
 
 
 M. Krishna, "xi-zeta relation", Proceedings
of the Indian Academy of Sciences 109 (4) (1999) 379-383
 [abstract:] "In this note we prove a relation between the Riemann zeta function 
and the xi function (Krein spectral shift) associated with the Harmonic Oscillator in one 
dimension.  This gives a new integral representation of the zeta function and also a
reformulation of the Riemann hypothesis as a question in L1(R)." 
 
 
 
 A. Connes, "Formule de trace en geometrie non commutative et hypothese
de Riemann", C.R.Sci. Paris, t.323, Serie 1 (Analyse) (1996) 
1231-1235.; 
 (Abstract) "We reduce the Riemann hypothesis for L-functions on a
global field k to the validity (not rigorously justified) of a trace 
formula for the action of the idele class group on the noncommutative 
space quotient of the adeles of k by the multiplicative group of 
k."
 Berry and Keating refer to this article in their "H = xp
and the Riemann zeros", and explain that Connes has devised a Hermitian
operator whose eigenvalues are the Riemann zeros on the critical line.
This is almost the operator Berry seeks
in order to prove the Riemann Hypothesis, but unfortunately the possibility of zeros off the 
critical line cannot be ruled out in Connes' approach.  
 His operator is
the transfer (Perron-Frobenius) operator of a classical transformation.
Such classical operators formally resemble quantum Hamiltonians, but
usually have complicated non-discrete spectra and singular eigenfunctions.
Connes gets a discrete spectrum by making the operator act on an 
abstract space where the primes appearing in the Euler product for the
Riemann zeta function are built in; the space is constructed from 
collections of p-adic numbers (adeles) and the associated units
(ideles).  The proof of the Riemann Hypothesis is thus reduced to 
the proof of a certain classical trace formula.
 relevant articles by Connes and videotaped
1998 lecture series
 
 
 
 D. Goldfeld, "Explicit Formulae as Trace Formulae", from Number Theory, Trace Formulas
 and Discrete Groups (K.E. Aubert, E. Bombieri and D. Goldfeld, eds.) (Academic, 1989) 
281-288
 "In his epoch-making paper [2], Selberg developed a general trace 
formula for discrete subgroups of GL(2,R).  The analogies with the 
explicit formulae of Weil [3] (relating very general
 sums over primes with corresponding sums over the critical zeroes of the zeta-function) 
are quite striking and have been the subject of much speculation over the years.
 It is the object of this note to show that Weil's explicit formula can in fact be 
interpreted as a trace formula on a suitable space.  The simplest space we have been 
able to construct for this purpose, at
present, is the semidirect product of the ideles of norm one with the 
adeles, factored by the discrete subgroup 
Q* |X Q, the semideirect product of the multiplicative group of 
rational numbers with the additive group of rational numbers.  We will show that for 
a suitable kernel function on this space, the conjugacy class side of the 
Selberg trace formula, is precisely the sum over the 
primes occuring in Weil's explicit formula.
 This implies that the sum of the eigenvalues of the self-adjoint integral operator
associated to the aforementioned kernel function is precisely the sum over the critical
zeroes of the Riemann zeta-function occurring on the other side of Weil's formula. The
relation between the eigenvalues of this integral operator and the zeroes of the 
zeta-function appears quite mysterious at present.  What is lacking is a suitable 
generalization of the Selberg transform in this situation.
 Finally, we should point out that our approach leads to various new equivalences 
to the Riemann Hypothesis, such as certain positivity hypotheses for the integral 
operators. Although we have worked over Q, for simplicity of exposition, it 
is not hard to generalize our results to L-functions of arbitrary number fields."
 
 
 
 D. Mayer, "The thermodynamic
formalism approach to Selberg's zeta function for PSL(2,Z)", Bulletin
of the AMS 25(1991) 55-60. 
 "The thermodynamic formalism...leads to a rather explicit representation
of the Smale-Ruelle function and hence also of the Selberg function for
PSL(2,Z) in terms of Fredholm determinants of transfer operators
of the map TG. Finally, combining our results with classical
ones for the Selberg function derived from 
the trace formula suggests also
a seemingly new formulation of Riemann's hypothesis on his zeta function
in terms of the transfer operators of TG."
 
 
 
 According to A.
Strombergsson, the following reformulate the RH in terms of 
problems involving the distribution of closed horocycles:
 D. Zagier, "Eisenstein series and the Riemann zeta function", in
Automorphic Forms, Representation Theory and Arithmetic, 
Tata Institute, Bombay (Springer-Verlag, 1981) 275-301.
 A. Verjovsky, "Arithmetic geometry and dynamics in the unit
tangent bundle of the modular orbifold", Dynamical Systems,
Santiago, 1990 (Longman, 1993) 263-298.
 Horocycles are most easily understood as horizonal lines in the 
upper-half-plane model of the hyperbolic plane.
 
 
 
 Strombergsson has also pointed out another paper by Verjovsky which
reformulates the RH in terms of a 'comparitively elementary equivalence,
not involving horocycles':
 A. Verjovsky, "Discrete measures and the Riemann hypothesis", Kodai
Mathematics Journal 17 no. 3 (1994) 596-608 (Workshop on
Geometry and Topology, Hanoi, 1993).
 
 
 
 L D Pustyl'nikov, "On 
a property of the classical zeta-function associated with the Riemann 
hypothesis", Russ. Math. Surv. 54 (1) (1999), 262-263.
 This is an incredibly elegant reformulation of the RH: all even derivatives of the xi function at 1/2 are 
positive.  This is related to some other RH equivalences due to Li, 
Lagarias and Bombieri.  
 
 
 
 F. Roesler, "Riemann's 
hypothesis as an eigenvalue problem. III",  Linear Algebra and 
its Applications 141 (1990) 1-46
 [abstract:] "We give 
conditional induction proofs for the existence of a small zero-free 
strip inside the critical strip of Riemann's zeta function $\zeta(s)$.
The starting point is some formulas for the eigenvalues $\lambda$ of 
certain matrices AN over the integers, whose 
determinants are connected with Riemann's hypothesis by the equation 
$det_{A}N = N!\Sum_{1 \leq n \leq N} \mu(n)/n$, where $\mu$ denotes 
the Möbius function. The conditions of the proofs refer to properties 
of the characteristic polynomials XN(x) of the 
matrices AN near x = 0 and/or the existence 
of small eigenvalues. A typical example: If for every 
N > N0 at least one of the 
polynomials XM(x), 
$N \leq M \leq N + N^{1 + \epsilon} has a zero $\lambda$ such that 
-0.09 < $\lambda$ < 1.04, then $\zeta(s) \neq 0$ if 
$\Re s > 1 - \epsilon$."
 
 
 
 D. Merlini, "The Riemann magneton of 
the primes" (preprint 04/04)
 [abstract:] "We present a calculation involving a function related 
to the Riemann Zeta function and suggested by two recent works 
concerning the Riemann Hypothesis: one by Balazard, Saias and Yor and 
the other by Volchkov. We define an integral m(r) 
involving the Zeta function in the complex variable s = r
 + it and find a particularly interesting expression for 
m(r) which is rigorous at least in some range of r.
In such a range we find that there are two discontinuities of the 
derivative m'(r) at r = 1 and r = 0, which 
we calculate exactly. The jump at r = 1 is given by 4*Pi. The 
validity of the expression for m(r) up to r = 
1/2 is equivalent to the truth of the Riemann Hypothesis (RH). 
Assuming RH the expression for m (r) gives m = 0 
at r = 1/2 and the slope m'(r) = Pi*(1 + gamma) = 
4.95 at r = 1/2 (where gamma = 0.577215... is the Euler 
constant). As a consequence, if the expression for m(r) 
can be continued up to r = 1/2, then if we interpret 
m(r) as a magnetization in the presence of a magnetic 
field h = r - 1/2 (or as a "free energy" at inverse 
temperature beta proportional to r), there is a first order 
phase transition at r = 1/2 (h = 0) with a jump of 
m'(r) given by 2*Pi times the first Lin coefficient 
lambda_1 = [1+gamma/2-(1/2)ln(4*Pi)] = 0.0230957. Independently of the 
RH, by looking at the behavior of the convergent Taylor expansion of 
m(r) at r = 1-, m(r = 1/2+) as well
as the first Lin coefficient may be evaluated using the Euler product 
formula, in terms of the primes. This gives further evidence for the 
possible truth of the Riemann Hypothesis." 
 S. Beltraminelli and D. Merlini, "The criteria of 
Riesz, Hardy-Littlewood et. al. for the Riemann Hypothesis revisited using similar functions" (preprint 01/06)
 [abstract:] "The original criteria of Riesz and of Hardy-Littlewood concerning the truth of the Riemann Hypothesis 
(RH) are revisited and further investigated in light of the recent formulations and results of Maslanka and of Baez-Duarte 
concerning a representation of the Riemann Zeta function. Then we introduce a general set of similar functions with the 
emergence of Poisson-like distributions and we present some numerical experiments which indicate that the RH may barely 
be true."
 
 
 
 M. McGuigan, "Riemann 
Hypothesis and short distance fermionic Green's functions" (preprint 04/05)
 [abstract:] "We show that the Green's function of a two dimensional fermion with a 
modified dispersion relation and short distance parameter a is given by the Lerch 
zeta function. The Green's function is defined on a cylinder of radius R and we show 
that the condition R = a yields the Riemann zeta function as a quantum 
transition amplitude for the fermion. We formulate the Riemann hypothesis physically as a 
nonzero condition on the transition amplitude between two special states associated with 
the point of origin and a point half way around the cylinder each of which are fixed points 
of a Z2 transformation. By studying partial sums we show that that the transition 
amplitude formulation is analogous to neutrino mixing in a low dimensional context. We also 
derive the thermal partition function of the fermionic theory and the thermal divergence at 
temperature 1/a. In an alternative harmonic oscillator formalism we discuss the 
relation to the fermionic description of two dimensional string theory and matrix models. 
Finally we derive various representations of the Green's function using energy momentum 
integrals, point particle path integrals, and string propagators.
 
 
 archive     
tutorial     
mystery     
new     
search     
home     
contact
 
 |